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Special Introduction 
 
 

Bitxor had its beginnings as a test project between 

a community of buying and selling Cryptocurrencies (OTC), we initially held 
  
the decision to develop a collection token with the Tron network, which aims to 
maintain the core essence of decentralization throughout our 
CosmoSystem (August 2022). 
 
 
Shortly thereafter, a multidisciplinary team of highly talented professionals from Latin 

America and companies such as Kriptxor Corp, Microsula S.A. and Focus 

On Results S.A., where new ideas began to emerge, including the development of 

our own Blockchain. 

 
 
Although there were initially disagreements about what to primarily build, we quickly 
decided to create something new and different. This allowed for the expansion of all 
design ideas, as well as the use of high coding standards. so, it gave us the opportunity 
to contribute something new to the blockchain landscape. As a result of a lot of effort, 
mainly at night or on weekends due to the various schedules available among the 
community, the main network was launched. Bitxor. 
In this process we remained satisfied with what was built, but we knew that we took 
some shortcuts, so we should continue to improve it constantly and allow faster 
innovation in the future. 
 
 
We thank everyone for being a contribution of inspiration to build a completely 
different chain: Bitxor. Our main goal was to build a high-performance *blockchain* 
with strong supports, for deterministic completion. In this we believe and this is how 
we achieve it. 
 
This has been a long journey for all of us, but we are excited to see what is to come 
and what new things we bring. 
 
``Bitxor protocol is made to build´´



 

 

Typographical Conventions 
 
 
 

Description attributes Example 

Project's name bold, colored Bitxor 

Lessons fixed width font Xolonium 

fields fixed width font NotoSans /Arial 

file paths fixed width font 

I will 
compro
mise  step.dat 

   

Configuration settings (preceded by con- italic red:maxDifficul- 

figuration filename) in text mode  Ty Blocks 
Configuration settings (no 
configuration) regular maxDifficultyBlocks 
ration filename) in equations and 
formulas.     

the     
   

Fields in equations and formulas regular 
T::Public key of the 
signer 

Function Names in Equations and 
Formulas regular verifiable data buffer() 

the     
     

 
Table 1: Typographic conventions used in this document 



 

 

1 Introduction 
 
 
The protocol Bitxor It is based on Blockchain with a multi-layer architecture, high performance 
and without rust. - these are the first principles that influenced the development of Bitxor. 
Weather A handful of DLT protocols were considered, a blockchain protocol was quickly 
chosen because it was deemed truer to the ideal of lack of trust. Any node can download a 
complete copy of the chain and be able to verify it independently at all times. Nodes with 
enough gathering power can always create blocks and never need to rely on a leader. These 
options necessarily sacrifice some performance relative to other protocols, but seem more 
consistent with the philosophical underpinnings of Bitcoin.  

Bitxor supports both probabilistic and deterministic block completion. Under probabilistic 
completion, the probability of any particular block being reversed decreases as more and more 
blocks are added, or chained together. Although the probability can become very small, it is 
always nonzero.1. In contrast, deterministic completion includes a mechanism in the protocol 
that allows checkpoints to be set that can never be reversed. This can lead to potentially deep 
reversals, but provides stronger collateral. In either case, users bear the risk of block reversals 
and transaction invalidation. 
 

As part of a focus on lack of trust, the following features have been added: 
 

• Block headers can be synchronized without transaction data, while allowing chain 

integrity verification. 
 

• Transaction Merkle trees allow cryptographic proofs of contention (or not) of 

transactions within blocks. 
 

• Receipts increase the transparency of indirectly triggered state changes. 
 

• Proofs of state allow trustless verification of a specific state within the blockchain. 
 

In Bitxor, there is a single server executable that can be customized by loading different 

plugins (for transaction support) and extensions (for functionality). exist 
 
 

1When probabilistic completion is enabled, for performance reasons, at most 
network:maxRollbackBlocks is allowed to roll back. Older blocks are assumed, but not guaranteed, to 
be finished because the probability of their reverting is quite low.  
 

Page 1 of 115 



 
three main configurations (per network), but more custom hybrid configurations are possible 

by enabling or disabling specific extensions. 
 

The three main configurations are: 

 
1. Peer: These nodes are the backbone of the network and create new blocks. 

 
2. API: These nodes store data in a MongoDB database for easy querying and can be 

used in conjunction with a NodeJS REST server. 
 

3. Dual: These nodes perform the functions of the Peer and API nodes. 

 
A strong network will typically have a large number of peer nodes and enough API nodes to 

support incoming client requests. Allowing the composition of nodes to vary dynamically based 

on actual needs should lead to a more globally resource-optimized network. 
 

Basing the core block and transaction pipelines on the circuit breaker pattern, and using 
parallel processing whenever possible, allows for high transaction rates per second relative to 
a typical blockchain protocol. 

 

 

1.1 Network fingerprint 

 
Each network has a unique fingerprint that is made up of the following: 

 
1. Network Identifier: Two-byte identifier that can be shared across networks. All 

addresses supported by a network must have this value as the first two bytes. 
 

2. Generation Hash Seed: 32-byte random value that must be globally unique across all 
networks. This value is prepended to the transaction data before the hash or signature 
to prevent cross-network replay attacks. 
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2 System 
  

Bitxor supports high customization at both network and node level 

individual. The network-wide configuration, specified in the network, must be the same for 
all nodes in one the net. Rather, node-specific settings may vary 
between all nodes in the same network, and are located on the node. 
 

Bitxor was designed to use a plugin / extension approach instead of supporting Turing 

complete smart contracts. While the latter may allow for more user flexibility, it is also more 
error-prone from the user's perspective. A plugin model limits the operations that can be 
performed on a blockchain and consequently has a smaller attack surface. Furthermore, it is 
much easier to optimize the performance of a discrete set of operations than an infinite set. 
This helps Bitxor achieve the high performance for which it was designed. 

 

2.1 Transaction plugins 

 
All nodes in a network must support the same types of transactions and process them in exactly 
the same way so that all nodes can agree on the global state of the blockchain. The network 
requires each node to load a set of transaction plugins, and this set determines the types of 
transactions that the network supports. This set is determined by the presence of network: 
plugin* sections in the network configuration. All nodes in the network must coordinate and 
agree to any changes, additions, or removals of these plugins. If only a subset of nodes agree 
to these modifications, those nodes will be in a fork. all incorporated Bitxor Transactions are 
built using this plugin model to validate their extensibility. 
 

A plugin is a separate dynamically linked library that exposes a single entry point in the 

following form2: 
 

External"C" PLUGIN_API  
empty Logging subsystem (  

bitxor::plugins::manager and plugin manager); 
 

The plugin manager provides access to the subset of settings that plugins need to 

initialize. Through this class, a plugin can register zero or more of the 

 
 

2The format of plugins depends on the target operating system and compiler used, so all host applications and 
plugins must be built with the same compiler version and options.  
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Following: 
 
 

1. Transactions: New transaction types and the mapping of those types to scan rules can 

be specified. Specifically, the plugin defines rules to translate a transaction into 

component notifications that are used in post processing. Some processing restrictions 

can also be specified, such as stating that a transaction can only appear within an 

aggregate transaction (see6.2:Added transaction). 
 

2. Caches: New cache types and rules can be specified for serializing and unrealizing 
model types to and from binaries. Each state-related cache can optionally be included in 
a block's StateHash computation (see7.3:state hashes) when that feature is enabled. 

 
3. Controllers: These are APIs that can always be accessed. 

 
4. Diagnostics: These are APIs and counters that can only be accessed when the node is 

running in diagnostic mode. 
 

5. Validators: Stateless and stateful validators process notifications produced by block and 

transaction processing. Registered validators can subscribe to general or plugin-defined 

notifications and reject disallowed values or state changes. 
 

6. Observers: Observers process notifications produced by block and transaction 
processing. Registered observers can subscribe to general or plugin-defined 
notifications and update the status of the blockchain based on their values. Observers 
do not require any validation logic because they are only called after all applicable 
validators succeed. 

 
7. Resolvers: Custom mappings from unresolved to resolved types can be specified. For 

example, this is used by the namespace plugin to add support for alias resolutions. 

 

2.2 Bitxor Extensions 

 
Individual nodes within a network can support a heterogeneous mix of capabilities. For 
example, some nodes may want to store data in a database or post events to a message queue. 
All of these capabilities are optional because none of them affect consensus. Such capabilities 
are determined by the set of extensions that a node loads as specified in extensions-{process}: 
extensions. most incorporated Bitxor functionality is built using this extension model to 
validate its extensibility. 
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An extension is a separate dynamically linked library that exposes a single entry point in the 

following form3:  
external"C" PLUGIN_API  
empty Log extension (  

bitxor :: extensions :: ProcessBootstrapper & bootstrapper 
 

ProcessBootstrapper provides full access Bitxor configuration and services that extensions 
need to initialize. Providing this additional access allows extensions to be more powerful than 
plugins. Through this class, an extension can register zero or more of the following: 
 

1. Services: A service represents an independent behavior. Services are passed an object 
that represents the state of the executable and can use it to configure a multitude of 
things. Among others, a service can add diagnostic counters, define APIs (both 
diagnostic and non-diagnostic), and add tasks to the task scheduler. You can also create 
dependent services and bind their lifetime to that of the hosting executable. There are 
very few limitations on what a service can do, allowing for the potential for significant 
customization. 

 
2. Subscriptions – An extension can subscribe to any supported blockchain event. Events 

are generated when changes are detected. Block change, status, unconfirmed 
transaction, and partial transaction events are supported. Transaction status events are 
generated when the processing of a transaction is complete. Node events are generated 
when remote nodes are discovered. 

 
In addition to the above, extensions can configure the node in more complex ways. For 

example, an extension can register a custom network time provider. In fact, there is a 
specialized extension that establishes a time provider based on algorithms described 
insixteen:Weather Synchronization. This is an example of the high levels of customization that 
this extension model. To understand the full range of extensibility allowed by extensions, 
consult the project code or developer documentation.4. 
 
 
2.3 Server 

 
the simplest Bitxor the topology consists of a single executable server. Transaction plugins 
required by the network and Bitxor The extensions desired by the node operator are loaded 

and initialized by the server. 
 
 

3The format of the extensions depends on the target operating system and compiler used, so all host applications 
and plugins must be compiled with the same version and compiler options. 

 
 
  
4 for details https://github.com/BitxorCorp 
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Bitxor stores all your data in a data directory. The content of the data directory. they are 

as follows: 

 
1. Block version directories: These directories contain block information in a proprietary 

format. Binary data, transactions, and associated data for each confirmed block is stored 
in these directories in files with .dat and .stmt extensions. statements (see7.2:Income) 
generated by processing each block are also stored here for quick access. An example 
of a versioned directory is 00000, which contains the first group of blocks. hashes.dat 
contains a mapping of block heights to lock hashes.  
When deterministic completion is enabled, these directories will also contain versions  
.proof files that contain proof information for each completion epoch. 

 
2. audit: audit files created by the audit consumer (see9.1.1:Common Consumers) are 

stored in this directory. 
 

3. Importance: Versioned files that contain information about important accounts at each 

importance recalculation point. Using files in this directory, the set of important accounts 

can be reconstituted at any important recalculation point. These files allow deep 
reversals that require undoing several important calculations. This directory is only 

created when deterministic completion is enabled. 
 

4. logs – Versioned log files created when file-based logging is enabled are stored in this 
directory. Active log files associated with running processes are stored directly in the 
data directory. Each log file is usually prefixed with the name of the source process. 

 
5. spool - Subscription notifications are written to this directory. They are used as a 

message queue to pass messages from the server to the broker. They are also used by 

the recovery process to recover data in the event of a bad termination. 
 

6. condition -Bitxor stores its proprietary archive files in this directory. Supplemental.dat 

and files ending with summary.dat store summary data. Files ending with Cache.dat 
store full cache data. 

 
7. saidb: When node: enableCacheDatabaseStorage is set, this directory will contain 

RocksDB files. 
 

8. transfer message: When user: enableDelegatedHarvestersAutoDetection is set, this 

directory will contain delegated harvest requests fetched for the current node. 
 

9. commit step.dat - Stores the most recent step of the commit process initiated by the 

server. This is mainly used for recovery purposes. 
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10. index.dat – This is a counter containing the number of blocks stored on disk. 
 

11. proof.index.dat – This is a counter containing the number of completion proofs stored 

on disk. 
 

12. Voting status.dat – Stores information about the last completion message sent by a 

node. 
 
 

2.3.1 Cache database 

 
The server can run with or without a cache database. When node:enableCacheDatabaseS-

torage is set, RocksDB is used to store cache data. Verifiable status (see7.3:state hashes) 

requires a cache database and is expected to be enabled in most network configurations. 
 

A cache database should only be disabled when all of the following are true: 
 

1. A high rate of transactions per second is desired. 
 

2. The trustless verification of the cache state is not important. 
 

3. The servers are configured with a large amount of RAM. 
 

In this mode, all cache entries always reside in memory. At power off, cache data is written 
to disk in multiple flat files. At startup, this data is read and used to fill memory caches. 
 

When a cache database is enabled, summarized cache data is written to disk in multiple flat 
files. This summary data is derived from data stored in caches. An example is the list of all high 
value accounts that have a balance of at least net: minHarvesterBalance. While this list can be 
generated by (re)inspecting all accounts stored in the account state cache, it is saved and 
loaded from disk as an optimization. 
 

2.4 Runner 

 
The intermediation process allows for more complex solutions. Bitxor Behaviors will be added 

without sacrificing parallelization. Transaction plugins required by the network and Bitxor The 

extensions desired by the node operator are loaded and initialized by the broker. Although the 
broker supports all the features of transaction plugins, it only supports a subset of Bitxor 

Features of the extensions. For example, overriding the network time provider in the broker is 
not supported. Broker extensions are primarily intended to register subscribers and react to 
events forwarded to those subscribers. Consequently, it is expected that the server and 
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broker has different extensions loaded. See the project code or developer documentation for 

more details. 
 

The broker monitors the spool directories for changes and forwards any event notifications 

to subscribers registered by loaded extensions. Extensions register their subscribers to 

process these events. For example, a database extension can read these events and use them 

to update a database to accurately reflect the global state of the blockchain. 
 

Spool directories function as one-way message queues. The server writes messages and 

the broker reads them. There is no way for the broker to send messages to the server. This 

decoupling is intentional and was done for performance reasons. 
 

The server generates subscription events in the blockchain synchronization consumer 

(see9.1.2:bye-National bloc consumers) when you have an exclusive lock on the blockchain 

data. These operations are offloaded to the broker to avoid slow database operations when 

the server has an exclusive lock. Server overhead is minimal because most of the data used 

by the broker is also required to retrieve the data after a server crash. 

 

2.5 Recovery 

 
The recovery process is used to repair the global state of the blockchain after an incorrect 

server and/or broker termination. Transaction plugins required by the network and Bitxor The 

extensions desired by the node operator are loaded and initialized by the recovery process. 

When a broker is used, the recovery process must load the same extensions as the broker. 
 

The specific recovery procedure depends on the configuration of the process and the value 
of the confirmation step.dat file. Generally, if the server exited after the state changes were 
flushed to disk, those changes will be reapplied. The state of the blockchain will be the same 
as if the server had applied and committed those changes. Otherwise, if the server exited 
before the state changes were flushed to disk, the pending changes will be discarded. The 
state of the blockchain will be the same as if the server had never attempted to process those 
changes.   

Once the recovery process is complete, the state of the blockchain should be 
indistinguishable from the state of a node that never ungracefully terminated. The spooled 
directories are repaired and processed. Block and cache data stored on disk is reconciled and 
updated. Pending status changes are applied, if applicable. Other files that indicate the 
presence of a bad termination are updated or deleted. 
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2.6 Common topologies 

 
Although a network can be made up of a large number of heterogeneous topologies, most 
nodes are likely to fall into one of three categories: Peer, API, or Dual. The same server 
process is used in all of these topologies. The only difference is in which extensions each 
loads. 
 

Peer nodes are light nodes. They have enough functionality to add security to the blockchain 
network, but little beyond that. They can sync with other nodes and collect new blocks. 
 

API nodes are heavier nodes. They can sync with other nodes, but cannot collect new blocks. 
They support hosting bonded aggregate transactions and collecting co-signatures to complete 
them. They require a broker process, which is configured to write data to a MongoDB database 
and propagate changes through public message queues to subscribers. The REST API 
depends on both of these capabilities and is typically co-located with an API node for 
performance reasons to minimize latency. 
 

Dual nodes are simply a superset of Peer and API nodes. They support the full capabilities 
of both node types. Since these nodes support all the capabilities of API nodes, they also 
require an intermediary. 
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3 Cryptography 
  

Blockchain is a technology requires the use of some 

crypto concepts. Bitxor uses cryptography based on elliptic curve cryptography 
(ECC). The choice of the underlying curve is important to ensure safety and speed. 
Bitxor uses the Ed25519 digital signature algorithm. East 
algorithm uses the following Twisted Edwards curve: 
 
 
 
 

over the finite field defined by the prime number 2255−19. The base point for the 
corresponding group G is called B. The group has q = 

2252+27742317777372353535851937790883648493 items. It was developed by DJ 
Bernstein et al. and it is one of the safest and fastest digital signature algorithms [Ber+11]. 
 
 

It is important for Bitxor The algorithm produces short 64-byte signatures and supports fast 

signature verification. Neither key generation nor signing is used during block processing, so 
the speed of these operations is not important. 
 
 

3.1 Public/private key pair 

 

A private key is a 256-bit random integer k. To derive from it the public key, the public key A, 

the following steps are followed: 
 
 

 

 

 

 

 
Since A is a group element, it can be encoded into a 256-bit integer A, which serves as the 

public key. 
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3.2 Signature and Verification 

 
Given a message M, private key k, and its associated public key A, the following steps are 

followed to create a signature: 
 

  

  

  
Then (R, S) is the signature of the message M under the private key k. Note that only signatures 
where S < q and S > 0 are considered valid to avoid the problem of 
malleability of the firm. 
 

To verify the signature (R, S) for the given message M and public key A, the verifier checks 

S < q and S > 0 and then computes 

    ˜  
 

 R= SB − H(R, A, M)A  
 

and verify that 
   ˜ 

(8)

 

 
 

 R=R 
 

If S was calculated as shown in (7) after 
 

SB= rB + (H(R, A, M)a)B = R + H(R, A, M)A 
 
Y (8) will hold. 
 
 

3.2.1 batch verification 

 
When many signatures need to be verified, a batch signature verification can speed up the 
process by about 80%. Bitxor uses the algorithm described in [Ber+11]. Given a batch of (Mi, 
Ai, Ri, Si) where (Ri, Si) is the signature of the message Mi with the public key Ai, let Hi = H(Ri, 
Ai, Mi). Also, suppose that a corresponding number of independent uniformly distributed 128-
bit random integers zi are generated. Now consider the equation: 
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All Piso are elements of a cyclic group (remember that q is prime). If any Pin is zero, for 

example P2, it means that for given integers z0, z1, z3, z4. . ., there is exactly one option for 
z2 to satisfy (10). The chance of that is 2−128. Therefore, if (9) holds, it is almost certain that 
Pi= 0 for all i. This implies that the signatures are valid.  

Yes (9) is not met, it means that there is at least one invalid signature. Then, Bitxor uses 

single signature verification to identify invalid signatures. 

 

3.3 Verifiable Random Function (VRF) 

 
A verifiable random function (VRF) uses a public/private key pair to generate pseudorandom 
values. Only the owner of the private key can generate a value such that it cannot be 
predetermined by an adversary. Anyone with the public key can verify whether or not the value 
was generated by its associated private key. Bitxor uses the ECVRF-EDWARDS25519-
SHA512-TAI. 
 

To generate a test5 given a public key Y corresponding to a private key SK = xB and an 

input alpha seed6: 
 

H = map_to_group_element(alpha, Y )   
γ = xH  
k = generate_nonce(H)  
c = IetfHash(3, 2, H, γ, kB, kH)[0..15]  
s = (k + cx) mod q  

proof = (γ, c, s) 

 

The proof produced by the above function can be verified with the following procedure: 
 

H = map_to_group_element (alpha, Y )  
U = sB − cY  
V = sH − cγ  

verification hash = IetfHash(3, 2, H, γ, U, V )[0..15]  
 

When the computed verification hash matches part c of the test, the verification of the 

random value is successful. 

 
  

5 This is usually called proof, not to be confused with verification, because the owner of the private 
key must prove that they generated the random value with their private key.  

6The listings provided in this section do not define helper functions. Full descriptions of these 
functions can be found in [Goal+20].  
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A test hash, also called a VRF hash result, can be derived from γ of a validated test: 

Test  Hash= IetfHash(3, 3, 8γ) (eleven) 

 
 

 

3.4 Voting Key List 

 
Final voters must specify the range of final epochs in which a root voting key is eligible to vote. 
Before announcing a root voting key, voters must create a voting key list containing voting keys 
fixed by epoch. The construction of the list is roughly based on a simplified Bellare-Miner 
[BM99] building. Each key in the list is bound to a single epoch and is deleted when the 
finalization process progresses to a later epoch. This provides some forward secrecy. Even if 
an attacker obtains a list of voting keys, completed epochs cannot be modified or repudiated. 

       root voting public key 
  

 
 

Figure 1: List of voting keys 

 

The list is fully built before announcing a voting key link transaction. First, the root voting key 
pair is generated. The root voting public key is signed with the signing public key of an account 
as part of the voting key link transaction. 
 

Next, keys linked to the epoch are generated. For each key pair, the root key pair signs the 
epoch-bound public key concatenated with its respective epoch. Once all the keys bound to 
the epoch are generated, the root voting secret key is discarded. In the equations, i refers to 
the respective epoch. 
 

sigbi = Signroot secret key(pkbi || IntToBin(i)) 
 

Signing a voting message for a given epoch creates a message signature: 
 

sig
message-i = Signskbi (message) 
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3.4.1 Signature 

 
The signature for a vote at a given epoch is made up of two pairs: 

 
•  (root voting public key, sigbi) 
•  (pkbi , sigmessage-i) 

 
 

The signature of a key voting list is considered verified when: 

 
• root voting public key is registered to participate in the given epoch. 

 
• Message the signer's key matches the key linked to the epoch. 

 
• All component signatures are cryptographically verified. 
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4 Trees 
 

Bitxor uses tree structures to support thin clients without 

confidence. merkle trees allow a client to cryptographically confirm the existence of 
data stored in them. Patricia trees allow a customer to confirm 
cryptographically the existence orlack of data stored in them. 
 

 

4.1 Tree merkle 

 
A Merkle tree is a tree of hashes that allows efficient proofs of existence. Within Bitxor, all 
basic merkle trees are constrained to be balanced and binary. each leaf The node contains a 
hash of some data. Each non-leaf node is built by hashing the hashes stored in the child nodes. 
In the Bitxor implementation, when any (non-root) layer contains an odd number of hashes, 
the last hash is doubled when calculating the main hash. 
 

    Merkle Hash = HRoot=   
 

     H HABCD, HEE2)   
 

   
HABCD=     HEE2 = 

 

   H HAB, HCD)  H HEE, HEE) 
 

  

HAB = 

 

HCD = 

   
 

       
 

     HEE = 
 

 H(H(A), H(B))  H(H(C), H(D)) H(H(E), H(E)) 
 

     
 

H(A) H(B) H(C) H(D) H( 

 
 

E) 
 

         
 

          
 

A B. C D E 
   

Figure 2: Four-level Merkle tree made up of five data elements 

 
An advantage of using merkle trees is that the existence of a hash in a tree can be proven only 
with log(N) hashes. This enables proof of existence with relatively low bandwidth requirements. 
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    Merkle Hash = HRoot=   
 

     H HABCD, HEE2)   
 

   HABCD=     HEE2 = 
 

   H HAB, HCD)  H HEE, HEE) 
 

  

HAB = 

 

HCD = 

   
 

       
 

     HEE = 
 

 H(H(A), H(B))  H(H(C), H(D))         H(H(E), H(E)) 
 

     
 

H(A) H(B) H(C) H(D) H( 

 
 

E) 
 

         
 

          
 

A B. C D E 
 

   
Figure 3: Merkle test required to prove the existence of B in the tree 

 
 

A Merkle proof of existence requires a single hash of each level of the tree. To prove the 

existence of B, a client must: 
 

1. Calculate H(B). 
 

2. Get HRoot; in Bitxor, this is stored in the block header. 
 

3. Application H(A), HCD, HEE2. 
 

4. Compute HRoot′= H(H(H(H(A), H(B)), HCD), hUS2). 
 

5. Compare HRoot and HRoot′; if they match, H(B) must be stored in the tree. 
 
 

4.2 Patricia Tree 

 
A Patricia tree[mor68] is a deterministically ordered tree. It is built from key value pairs and 
supports both existence and non-existence tests that only require log(N) hashes. Non-
existence tests are possible because this tree is deterministically ordered by keys. Applying the 
same data, in any order, will always result in the same tree. 
 

Inserting a new pair of key values into the tree breaks the key into nibbles, and each nibble 
is logically its own node in the tree. All keys within a single tree are required to have the same 
length, which allows for slightly optimized algorithms. 
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For illustration, consider the following key value pairs inTable 2. Some examples will use 

ASCII keys to elucidate concepts more clearly, while others will use hexadecimal keys to 
represent more precisely. Bitxor implementations. 
 

Figure 4 It represents a complete Patricia tree where each letter is represented by a separate 
node. Although this tree is logically correct, it is quite large and uses a lot of memory. A typical 
key is a 32-byte hash value, which means that storing a single value could require up to 64 
nodes. To work around this limitation, successive empty branch nodes can be collapsed to a 
branch node with at least two connections or to a leaf node. This leads to a different but more 
compact tree, as shown inFigure 5. 

 
key hex-key value  

 
do** 646F0000 verb 
dog* 646F6700 puppy 
doge 646F6765 mascot  
hours 686F7273 stallions 

 
Table 2: Sample data from Patricia's tree 

 

 

Root  
 

 

D H 
 

 

() () 
 

 

* G R 
 

 

* [verb] * [puppies] E [mascot] S [stallions] 
 

Figure 4: Conceptual Patricia tree (extended) composed of four data elements 
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Root  
 

 

DO 

 
 

 

HORS [stallions] 
 

 

** [verb] 

 

 

G 
 

 

* [puppies] 

 

 
E [mascot] 
  

Figure 5: Conceptual (compact) patrician tree composed of four data elements 
 

 

4.3 TreePatricia Merkle 

 
A Merkle Patricia tree is a combination of Merkle and Patricia trees. The Bitxor the 
implementation focuses on two types of nodes: leaf nodes and branch nodes. Each leaf node 
contains a hash of some data. Each branch node contains up to sixteen pointers to child nodes. 
 

As in a basic Merkle tree, each Merkle Patricia tree has a root hash, but the hashes stored 

in the Merkle Patricia tree are a bit more complex. 
 

Each node in the tree has a tree node path. This route consists of a sentinel nibble followed 
by zero or more route nibbles. If the path represents a leaf node, 0x2 will be set in the sentinel 
nibble. If the path consists of an odd number of nibbles, the sentinel nibble will be set to 0x1 
and the second nibble will contain the first nibble of the path. If the path is made up of an even 
number, the second nibble will be set to 0x0 and the second byte will contain the first nibble of 
the path. 
 

A leaf node is made up of the following two elements: 
 

1. TreeNodePath - Encoded tree node path (with set of leaf bits). 
 

2. ValueHash: Hash of the value associated with the key that ends in the leaf. 
 

The hash of a leaf node can be computed by hashing its components: 
 

H(Leaf ) = H(TreeNodePath, ValueHash) 
. 
 

A branch node is made up of the following elements: 
 

Page 18 of 115 



 

 

 
sentinel nibble  

 
odd path 0   0   bleaf    1   nibble1   nibble2..nibbleN[odd] 

 

byte 1 
 

sentinel nibble  
 

even way 0   0   bleaf    0  0000    nibble1..nibbleN[even] 

 

byte 1 
 

Figure 6: Tree Node Path Encoding 
 
 

1. Tree Node Path: Encoded tree node path (with the leaf bit not set). 
 

2. hashlink0, . . . , LinkHash15: hashes of children where the index is the next part of the 
path nibble. When there is no child present in an index, a zero hash should be used 
instead. 

 
The hash of a branch node can be computed by hashing its components: 

 
H(Branch) = H(Tree Node Path, LinkHash0,...,LinkHash15) 

 
. 
 

Rebuilding the example above with hexadecimal keys produces a tree that illustrates a more 
precise view of how a Bitxor the tree is built. Note that each branch node index makes up a 

single nibble of the path. This is represented in Figure 7. 
 
 

4.4 tree tests Patricia Merkle 

 
A Merkle proof of existence requires a single node from each level of the tree. To prove the 

existence of {key = 646F6765, value = H(mascot)}, a client must: 
 

1. Compute H(pet) (remember, all leaf values are hashes). 
 

2. Request all nodes on path 646F6765: Node6, Node646F, Node646F67. 
 

3. Verify that Node646F67::Link[6] is equal to H(Leaf(mascot)). 
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  6 
 

 4 8 
 

0 

6F    6F7273 [stallions] 

6  
 

000 [verb] 
0 

7 
 

 6 
 

 0 [puppy] 5 [mascot] 
  

 
Figure 7: Realistic Patricia tree with branch and leaf nodes and all optimizations. The path to 

mascot [646F6765] is highlighted. 

 
4. Compute H(Node646F67) and verify that Node6467::Link[6] is equal to H(Node646F67). 

 
5. Compute H(Node6467) and verify that Node6:: Link[4] is equal to H(Node6467). 

 
6. Existence is tested if all computed and actual hash values match. 

 
A Merkle test for non-existence requires a single node from each level of the tree. To prove 

the non-existence of {key = 646F6764, value = H(mascot)}, a client must: 
 

1. Compute H(mascot) (remember, all leaf values are hashes). 
 

2. Request all nodes on path 646F6764: Node6, Node646F, Node646F 67. 
 

3. Verify that Node646F67 :: Link[5] is equal to H(Leaf(mascot)). Since Link[5] is not 
configured, this check will fail. If the value being searched for was in the tree, it should 
be bound to this node due to the determinism of the tree. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Page 20 of 115 



 

 

5 Accounts and Addresses   

Bitxor uses elliptic curve cryptography to guarantee the 

confidentiality, authenticity and non-repudiability of all transactions. An account is uniquely 
identified by an address, which is partially derived from a one-way mutation of its public signing 
key. Each account is linked to a mutable state that is updated when transactions are made 
accepted by the network. This state is globally consistent and can contain zero or more public 
keys. 

 

5.1 Addresses 

 
A decoded address is a 24-byte value made up of the following three parts: 

 
• 2-byte network 

 
• 160-bit hash of an account's signing public key 

 
• 2-byte checksum 

 
The checksum allows fast recognition of misspelled addresses. It is possible to send tokens7 

to any valid address even if the address has not previously participated in any transactions. If 
no one owns the private key of the account to which the token are sent, the tokens will most 
likely be lost forever. 
 

An encoded address is a Base328 encoding of a decoded address. It is human readable 

and is used in clients. 
 

Note that the Base32 encoding of binary data has a spread factor of  , and the size of a 

decoded address is not divisible by five. Consequently, any Base32 representation of a 
decoded address will contain additional information. While this is not inherently problematic, 
when encoding a decoded address, the extra input byte is set to zero by convention for 
consistency between clients. Also, the last byte of the resulting 40-character string is 
discarded. 
 
7A token is a digital asset defined in Bitxor. The Token Bitxor (BXR) is the official token of  
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5.1.1 Address derivation 

 
To convert a public key to an address, the following steps are performed: 

 
1. Run 256-bit SHA3 on the public key. 

 
2. Perform 160-bit RIPEMD 160 of the hash resulting from step 1. 

 
3. Prepend the network version two-bytes to the RIPEMD hash 160. 

 
4. Run 256-bit SHA3 on the result, take the first two bytes as checksum. 

 
5. Concatenate the output from step 3 and the checksum from step 4. 

 
6. Encode the result using Base32.  
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Public key: X Y 
 
 
 

compressed public key 
 

32 bytes 
 
 
 
 

 
                       ripemd160(sha3-256(    compressed-public-key      )) 
 
 
 

 
2  20 bytes 

 
 
 
 
 
 

 

sha3  256( 2 20 bytes  )  

 
 

         
 

       32 byte 
 

     

29 byte 

 

   2 bytes . . .
 

         
 

 

 

binary address - 24 bytes 
 
     base32 encoding   2   20 bytes 

 
 
2 bytes 

 
 
00 
 

 
 
 
 
 
 

BXR9H-4WMCB2-JXGNQT-QHQOS4-5TGBFF4-V2MST-W4A    A  

 Figure 8: Address Generation 
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5.1.2 Aliasof direction 

 
An address can have one or more aliases assigned through an address alias transaction9. All 

transactions that accept addresses support the use of a public key-derived address or address 

alias. For such transactions, the format of the alias address field is: 
 

• network two-bytes ORnet with value 1 
 

• 8-byte namespace ID that is an alias 
 

• 14 byte zero 
 
 

5.1.3 Intentional address collision 

 
It is possible for two different public signing keys to produce the same address. If that address 
contains valuable assets AND has not previously been associated with a public key (for 
example, when sending a transaction from the account), an attacker could withdraw funds from 
that account. 
 

For the attack to be successful, the attacker would need to find a private+public key pair 
such that the SHA3 256 of the public key was at the same time equal to the RIPEMD preimage 
160 of the 160-bit hash mentioned above. Since SHA3 256 offers 128 bits of security, it is 
mathematically unlikely that a single SHA3 256 collision will be encountered. Due to similarities 
between Bitxor addresses and Bitcoin addresses, the probability of causing a Bitxor 
Address collision is roughly the same as causing a Bitcoin address collision.  
 

5.2 public keys 

 
An account is associated with zero or more public keys. Supported key types are: 

1. signature:  
Public key ED25519 that is used to sign and verify data. Any account can receive data, 
but only accounts with this public key can send data. This public key is the only one used 
as input in the calculation of an account's address. 

 
2. bound:  

This public key links a primary account to a remote collector. For a main account, 
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this public key specifies the account of the remote collector that can sign blocks on your 
behalf. For a remote account, this public key specifies the primary account for which you 
can sign blocks. These links are bidirectional and are always established in pairs. 

 
3. node:  

This public key is set to a primary account. Specifies the public key of the node to which 
you can delegate the collection. It is important to note that this does not indicate that the 
remote is actively collecting on the node, only that it has permission to do so. As long as 
the collection account or node owner is honest, the account is restricted from delegating 
collection to only one node at a time.  
An honest collector should only send their remote collector private key to a single node 
at a time. Changing your remote will invalidate all previous remote collection permissions 
granted to all other nodes (and implies forwarding security of delegated keys). Old private 
keys from remote collectors will no longer be valid and cannot be used to collect blocks. 
An honest node owner should only remotely harvest with a remote harvester private key 
that is currently linked to their node public key 

 
4. VRF:  

Public key ED25519 that is used to generate and verify random values. This public key 
must be set to a primary account for the account to be eligible for collection. 

 
5. vote:  

BLS public key used to sign and verify completion messages. All voting keys are 
temporary and must be registered with a start and end time. This public key must be set 
up on a parent account for the account to be eligible to vote. It is only valid when the 
current epoch is within its registered range. To allow for a seamless key change, an 
account can have at most network: maxVotingKeysPerAccount voting keys registered at 
one time. 
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6 Proceedings 
  

Transactions are instructions that modify the 

global chain status. Is it so atomically processed and grouped into blocks. 
If any part of a transaction fails processing, the state of the chain 
global is reset to the state before the transactionapplication attempt. 
 

There are two fundamental types of transactions: basic transactions and aggregate 
transactions. Basic transactions represent a single operation and require a single signature. 
Aggregated transactions are containers for one or more transactions that may require multiple 
signatures. 
 

Aggregated transactions allow basic transactions to be combined into potentially complex 
operations and executed atomically. This increases developer flexibility relative to a system 
that only guarantees atomicity for individual operations while restricting the overall set of 
allowed operations to a finite set. It does not require the introduction of a Turing complete 
language and all its inherent drawbacks. Developers don't need to learn any new languages or 
develop custom contract implementations from scratch. The composition of transactions must 
be less error-prone and lead to fewer errors than the implementation of computationally 
complete programs. 
 
 

6.1 Basic transaction 

 

A basic transaction is made up of cryptographically verifiable and non-verifiable data. All 
verifiable data is contiguous and signed by the transaction signer. Any non-verifiable data 
is either ignored (eg padding bytes) or can be computed deterministically from verifiable 
data. Every basic transaction requires verification of exactly one signature. 
 

You don't need to check any of the unverifiable header fields. The size is the serialized 
size of the transaction and can always be derived from the verifiable data of the transaction. 
The signature is an output to the signature and an input to the verification. SignerPublicKey 
is an input for both signing and verification. For a transaction T to pass signature 
verification, both Signature and SignerPublicKey must match verifiable data, which 
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it has length relative to size. 
 

verify(T::Signature, T::Signer's Public Key, Verifiable Data Buffer(T)) 

 

Reserved bytes are used to complete transactions so that all integral fields and 
cryptographic primitives have natural alignment. Since these bytes are meaningless, 
they can be removed without invalidating any cryptographic guarantees. 
 

Binary layouts for all types of transactions are specified in Bitxor open source schema 

language10. Consult published schematics for the most up-to-date specifications. 
 

0 1     2 3 4 5 6 7           
 

               
 

0x00 Size  reserved           
 

                 
 

0x08  Signature             
 

         0 1 2 3 4 5 6 7  
 

                 

         0x6C    V,N(2),T  
 

                 
 

         0x70   Max Fee    
 

                
 

         0x78   dead line    
 

                 

         0x80 
 

payload    
 

                 
 

                 
 

              
 

              

            
 

               H  

0x48 SignerPublicKey 
       

 

           
 

              
 

         (b) Verifiable data    
 

    

 

              
  

0x68  Reserved 
 

(a) Header (unsigned) 
 

Figure 9: Basic transaction binary design 
 

 

In the figures, (V)ersion, (N)etwork two-bytes and (T)ype are abbreviated due to 
space concerns. 

 
10Schematics can be found at https://github.com/bitxorcorp/.  
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6.2 Added transaction 

 
The design of an aggregate transaction is more complex than that of a basic transaction, but 
there are some similarities. An aggregated transaction shares the same unverifiable header as 
a basic transaction, and this data is processed in the same way. Also, an aggregated 
transaction has an unverifiable data footer followed by embedded transactions and co-
signatures. 
 

An aggregated transaction can always be sent to the network with all required co-signatures. 
In this case, it is said to be complete and is treated like any other transaction without any 
special processing. 
 

API nodes may also accept linked aggregate transactions that have incomplete joint natures. 
The sender must pay a security deposit that is returned if and only if all required joint signatures 
are collected before the transaction is finalized. Assuming this bonus is paid in advance, an 
API node will collect the co-signatures associated with this transaction until it has enough 
signatures or times out. 
 

TransactionsHash is the most important field in an aggregate transaction. It is the root Merkle 

hash of the embedded transaction hashes stored within the aggregate. To compute this field, 

a Merkle tree is built by adding each embedded transaction hash in natural order. The resulting 

root hash is assigned to this field. 
 

You don't need to check any of the unverifiable footer fields. PayloadSize is a calculated size 
field that must be correct to extract the exact same embedded transactions that were used to 
calculate TransactionsHash. Reserved bytes, again, are used for padding and have no intrinsic 
meaning. 
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 0 1 2 3 4 5 6 7                   
 

                        

0x00  Size  reserved                   
 

                         
 

0x08   Signature                     
 

                   0 1 2 3 4 5 6 7 
 

                     
 

                  0x88 PayloadSize reserved 
 

                         
 

          0 1 2 3 4 5 6 7 0x90   embedded   
 

         0x6C     V,N,T  H Hhhh hh    

                          
 

                         
 

                    0x6C     V  N (2) T   
 

 

                    
 

         
 
0x70   Max Fee          

 

                    
transactions 

 
 

         

0x78 
  

dead line 
     

 

                       

               Cosignatures  
 

                     
 

         

0x80 TransactionsHash 
    

                
 

               
 

                      
  

0x48 
 

SignerPublicKey 
 

(b) Verifiable data 
      

 

         
 

                           
 

                  (c) Unverifiable footer  
 

                        
 

0x68 reserved     v                       
 

                      
 

(a) Header (unsigned)                    
 

 
Figure 10 – Added Transaction Header Binary Layout 

 

 

6.2.1 Integrated transaction 

 
An embedded transaction is a transaction that is contained within an aggregate transaction. 
Compared to a basic transaction, the header is smaller, but the transaction-specific data is the 
same. The signature is removed because all the signature information is contained in the joint 
signatures. MaxFee and Deadline are removed because they are specified by the main 
aggregate transaction. 
 

Client implementations can use the same code to build the custom parts of a basic or 
embedded transaction. The only difference is in the creation and application of different 
headers. 
 

Not all transactions are supported as built-in transactions. For example, an aggregate 

transaction cannot be embedded within another aggregate transaction. 
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 0 1 2 3 4 5 6 7       
 

           

0x00  Size  Reserved 0     1     2     3      4      5     6      7  
 

         

0x2C 

 

 
 V, N(2),T 

 

 

0x08  SignerPublicKey   
 

         0x30  Useful load  
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Figure 11: Integrated Transaction Binary 

Layout 
 

 

 
6.2.2 joint signature 

 
A joint signature consists of a versioneleven, a public key and its corresponding signature. Zero 

or more joint signatures are added to the end of an aggregate transaction. Joint signatures are 

used to cryptographically verify an aggregate transaction involving multiple parties. 
 

eThe version is reserved for future extensions. Currently, it is expected to always be zero.  
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0x00 Version 
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0x28 Signature  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 12: Cosignature Binary Design 
 

 
For an aggregated transaction A to pass verification, it must pass basic transaction 

signature verification and have a joint signature for each embedded transaction signer12. 
 

Like any transaction, an aggregated transaction must pass basic transaction 

signature verification. 
 

Verify (A::Signature, A::SignerPublicKey, VerifiableDataBuffer(A)) 

 

Additionally, all joint signatures must pass signature verification. Note that 

cosigners sign the data hash of an aggregated transaction, not the data itself. 
 
   Verify (C::Signature, C::SignerPublicKey, H(VerifiableDataBuffer(A))) 
 
 
 

Finally, there must be a joint signature that corresponds to and satisfies each 

signer of the incorporated transaction. 

 
 

12 For multisignature accounts, there must be enough co-signatures to satisfy the multisignature account restrictions. 
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6.2.3 Extended design 

 

The aggregate transaction design described above was correct with one simplification. All 
embedded transactions are padded to completion on 8-byte boundaries. This ensures that 
all embedded transactions and joint signatures also start at 8-byte boundaries. Padding 
bytes are never signed or included in any hash. 
 

0 1 2 3 4 5 6 7    
PayloadSize reserved 

 
embedded 

 
 
transaction 1 

 
optional padding 

 
embedded 

 
 
  

transaction 2 
 

optionalpadding 
 

Cosignatures 
 

 
 
 

 

Figure 13: Added transaction footer with padding 
 

 

6.3 Transaction hashes 

 
Each transaction has two associated hashes: an entity hash and a Merkle component hash. 
The former uniquely identifies a transaction and is used to prevent multiple commits of the 
same transaction. The latter is more specific and is used when calculating Transactions Hash 
(see6.2:Added transaction).  

The entity hash of a transaction is calculated as a hash of the following: 
 

1. Transaction Signature – If this field is not included, an adversary could prevent a 
transaction from being included in the network by loading it with a nearly identical 
transaction containing a malformed signature. 
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2. Transaction Signer PublicKey – If this field were not included, an adversary could 
prevent a transaction from being included in the network by loading it with a nearly 
identical transaction that contained a malformed signer public key. 

 
3. Network Generation Hash Seed: This field prevents cross-network transaction replay 

attacks.13. 
 

4. Verifiable transaction data 

 
All confirmed transactions must have a unique entity hash. The entity hash of an aggregate 

transaction is independent of their joint signatures. This prevents the same aggregated 

transaction from being committed multiple times with different sets of valid co-signatures. 
 

The hash of the Merkle component of a normal transaction is identical to the hash of its 

entity. The hash of the Merkle component of an aggregated transaction is calculated by 

concatenating the hash of its entity with all the public keys of its joint signatures.14. This 

ensures that the Transactions Hash reflects all the co-signatures that allowed an aggregate 

transaction to be confirmed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

13 Also, when signing and verifying transaction data, the Generation Hash Seed network prepends the data so that transaction 
signatures are only verified on networks with a match.  
Hash seed generation.  

14 Co-signature signatures are not included because they can only have a single value given a specific public key and 
payload. 
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7 Blocks 
 

 

Bitxor it is, in essence, a chain of blocks. A blockchain is a 

ordered collection of blocks. understand the parts of a Bitxor block is essential 
to understand the capabilities of the platform. 
 

The design of a block is similar to the design of an aggregate transaction (see6.2:Agriculture-
aggregate transaction). A block shares the same unverifiable headerfifteenWhat an aggregate 
transaction, and this data is processed in the same way. Also, a block has a footer of 
unverifiable data followed by transactions. Unlike an aggregate transaction, a block is followed 
by basic, non-embedded transactions, and each transaction within a block is signed 
independently of the block's signer.sixteen. This allows any transaction that satisfies all 
conditions to be included in any block. 
 

You don't need to check any of the unverifiable footer fields. Reserved bytes are used for 

padding and have no intrinsic meaning. 

 

7.1 Block fields 

 
The height is the sequence number of the block. The first block, called the genesis block, 

has a height of one. Each successive block increases the height of the previous block by 

one. 
 

The timestamp is the number of milliseconds that have passed since the genesis block. Each 
successive block must have a higher timestamp than the previous blocks because the block 
time is strictly increasing. Each network tries to keep the average time between blocks close to 
the target block time. 
 

Difficulty determines how difficult it is to harvest a new block, based on previous blocks.  
The difficulty is described in detail in8.1:block difficulty. 
 

GenerationHashProof is the VRF proof generated with the block collector's VRF private key. 
It consists of a 32-byte γ, a 16-byte check hash (c), and a 32-byte scalar(s) (see3.3:Verifiable 
Random Function (VRF)). This is used to ensure that future block harvesters are unpredictable 
(see8.3:Block generation). 
 

15 To emphasize, this is not referring to the verifiable block header. Refers to fields such as Signature that precede the 
verifiable block header.  

16 In an aggregated transaction, the account creating the aggregated transaction must sign the transaction data for it to be 

valid. In a block, the block signer does not need to sign the data of any transaction contained in it. 
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Figure 14: Block Header Binary Layout 
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PreviousBlockHash 



 
Previous Block Hash is the hash of the previous block. This is used to ensure that 

all blocks within a blockchain are deterministically linked and ordered. 
 

Transactions Hash is the Merkle root hash of the transaction hashes stored within the 

block17. To compute this field, a Merkle tree is built by adding each transaction hash in 

natural order. The resulting root hash is assigned to this field. 
 

Receipts Hash is the Merkle root hash of the receipt hashes produced while processing the 

block. When a network is configured without network: enable Verifiable Receipts, this field must 

be set to zero in all blocks (see7.2:Income). 
 

StateHash is the hash of the global state of the blockchain after processing the block. 
When a network is configured without network: enable Verifiable State, this field must 
be set to zero in all blocks. Otherwise, it is calculated as described in7.3:state hashes. 
 

Beneficiary Address is the account to which the beneficiary share of the block will be 
assigned when the network has a non-zero network: mining profit percentage. This field can 
be set for any account, even one that is not yet known to the network. This field is set by the 
node owner when a new block is mined. If this account is set up as owned by the node owner, 
the node owner will share in the fees paid on all harvested blocks on their node. This, in turn, 
incentivizes the node owner to run a strong node with many delegated collectors. 
 

Fee Multiplier is a multiplier used to calculate the effective fee for each transaction contained 
within a block. The node: min Fee Multiplier is set by the owner of the node and can be used 
to achieve various goals, including profit maximization or confirmed transactions. Assuming 
that a block B contains a transaction T, the effective transaction fee can be calculated as: 
 

Effective fee (T ) = B::Fee Multiplier size of(T ) 
 
If the effective fee is greater than the transaction Max Fee, the transaction signer keeps the 
difference. Only the actual fee is deducted from the transaction signer and credited to the 
harvester. More information on fee multipliers can be found at8.3:Block Generation. 

 
7.1.1 Importance Block Fields 

 
Each block in which an importance calculation is performed contains an expanded footer with 
additional verifiable information18. This information reflects the global state of the blockchain 
after processing the block. 
 

17 This field has the same purpose as the field with the same name in an aggregate transaction.  
18 network: voting Set Groupingexpected to be a multiple of network: importance Grouping. 
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Voting Eligible Accounts Count is the number of accounts eligible to vote at the end time that 
covers the following importance group. This is an exact number and only includes accounts 
that meet all voting requirements. For example, accounts that do not have a voting key on file 
are excluded. 
 

Harvesting Eligible Accounts Count is the number of accounts with a balance of at least 
network: min Harvester Balance. This is an estimate and a maximum. The actual number of 
accounts eligible for collection may be less because accounts not eligible for collection are not 
excluded. For example, accounts that do not have a VRF key on file are not excluded. 
 

Total Voting Balance is the sum of the balance of all voting-eligible accounts at the time of 
completion covering the following importance group. This value allows trustless verification of 
completion tests. It can be used as the authoritative denominator when calculating the 
cumulative voter turnout percentage of a completion test. 
 

Previous Importance BlockHash is the hash of the previous importance block. This is a 
longer lasting guarantee, relative to the Previous Block Hash, that all blocks within a blockchain 
are deterministically linked and ordered. It can be used to enable a trustless fast sync protocol, 
which only needs to download important block headers instead of all block headers. 
 
 

7.2 Income 

 
Zero or more receipts are generated during the execution of a block. Receipts are primarily 
used to communicate status changes caused by secondary effects to clients. In this way, they 
allow simpler clients to remain aware of complex state changes. 
 

For example, the expiration of a namespace is triggered by the number of blocks that have 
been committed since the namespace was created. While the triggering event is on the 
blockchain, there is no indication of this state change in the block in which the expiration occurs. 
Without receipts, a client would need to keep track of all expiration namespaces and heights. 
With receipts, a customer simply needs to monitor receipts that are due. 
 

Another example is related to mining rewards. Receipts are produced indicating the main, 
non-delegated account being credited and the divisions of beneficiaries. They also 
communicate the amount of currency created by inflation. 
 

Receipts are grouped into three different types of statements and collated by receipt 
sources. The three types of statements are transactions, address resolution, and token 
resolution. 
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7.2.1 Receipt origin 

 
Each part of a block that is processed is assigned a two-part block scope identifier. The source 
(0, 0) is always used to identify block-triggered events regardless of the number of transactions 
in a block. 
 

   

Font main id Secondary ID 
Block 0 0 

Transaction 1-based index inside the block 0 

integrated trans 1-based index of added content 1-based index into the aggregate 

action door inside the block  
   

 
Table 3: Receipt source values 

 
 

 

7.2.2 Transaction statement 

 
Transaction statements are used to group receipts that have a shared receipt source. Each 
statement is made up of a receipt source and one or more receipts. Consequently, each receipt 
source that generates a receipt will have exactly one corresponding transaction statement. 

 
 

Figure 15: Transaction Statement Layout 
 

 
Data in transaction statements is not padded because it is only written during processing 

and is never read, so padding does not provide any benefit to server performance. A transaction 
statement hash is constructed by concatenating and hashing all the data in the statement, 
except the Size fields, which are derived from other data. 
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7.2.3 Resolution statements 

 
Resolution declarations are used exclusively to indicate alias resolutions. They allow a client to 
always resolve an unresolved value even when it changes within a block. Theoretically, two 
unresolved aliases within the same block could resolve to different values if there is an alias 
switch between their uses. Each statement is made up of an unresolved value and one or more 
resolutions to support this. 
 

There are two types of resolution statements - address and token - corresponding to the two 
types of aliases. DespiteFigure 16 illustrates the layout of a token resolution statement, the 
layout of an address resolution statement is nearly identical. The only difference is that the 
resolved and unresolved values are 25-byte addresses instead of 8-byte token IDs. 
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(b) Resolving Input Binary Layout 
 

    
 

                
 

                     
  

(a) Binary Token Resolution Statement Layout 
 

Figure 16: Token resolution statement layout 
 
 

The resolve statement data is not padded because it is only written during processing and is 
never read, so padding does not provide any benefit to server performance. A resolve 
statement hash is constructed by concatenating and hashing all the data in the statement, 
except for the Size fields, which are derived from other data. 
 

It is important to note that a resolve statement only occurs when a resolve occurs. If an alias 
is registered or changed in a block, but is not used in that block, a resolve statement will not 
be generated. However, each block that contains that alias and requires it to be resolved will 
produce a resolve statement. 

 

7.2.4 Receipt hashes 

 
To compute the receive hash of a block, all statements generated during block processing are 
first collected. A Merkle tree is then created by adding all the hash values of the statements in 
the following order: 

 
Page 39 of 115 



 
1. Hashes of transaction statements sorted by receipt source. 

 
2. Hashes of address resolution statements sorted by unresolved address. 

 
3. Hashes of token resolution statements ordered by unresolved token ID. 

 
 

When a network is configured with network: enable Verifiable Receipts , the root hash of 

this merkle tree is set as the Receipt Hash of the block. A client can perform a Merkle test to 

prove that a particular statement occurred during the processing of a specific block. 

 

7.3 State hashes 

 

Bitxor stores the global state of the blockchain in various typed state repositories. For For 

example, account status is stored in one repository and multiple signature status is stored in 
another. Each repository is a simple key value store. The specific repositories present on a 
network are determined by the transaction plugins enabled by that network. 
 

When a network is configured with network: enable Verifiable State, a Patricia tree is created 
for each repository. This produces a single hash that deterministically fingerprints each 
repository. Consequently, assuming N repositories, N hashes deterministically identify the 
global state of the blockchain. 
 

It is possible to store all N hashes directly in each block header, but this is not desirable. 
Each block header should be as small as possible because all clients, at a minimum, need to 
synchronize all headers to verify that a chain is rooted in the genesis block. Also, adding or 
removing functionality could change the number of repositories (N) and the format of the block 
header. 
 

Instead, all root hashes are concatenated.19 and hash to calculate the State Hash, which is 

a single hash that deterministically determines the global state of the blockchain. 

 
 

 
19The concatenation order is fixed and is determined by the repository id.  
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7.4 Extended design 

 

The block design described above was correct with a simplificationtwenty. All transactions are 
padded to completion on 8-byte boundaries. This ensures that all transactions also start on 8-
byte boundaries. Padding bytes are never signed or included in any hash. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 17: Block transaction footer with padding 

 

 

7.5 Block hashes 

 
Each block has an associated hash: an entity hash. This hash uniquely identifies a block and 

is used to prevent the same block from being processed multiple times. 
 

The entity hash of a block is calculated as a hash of the following: 

 
1. block signature 

 
2. PublicKey block signer 

 
3. Block (header) of verifiable data 

 
The entries in an entity hash for a block and a transaction are similar. The only difference 

is that the Generation Hash Seed network is not an input in the entity's hash calculation. 
 

20 This is also consistent with the extended design of an aggregate transaction.  
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for a block Including this field would serve no purpose for a block. Any block that contains at 
least one transaction cannot be replayed on a different network because the hashes of the 
transaction entity are different between networks. Consequently, the Transactions Hash of the 
block would also be different. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Page 42 of 115 

 
 
 

 



8 Blockchain 

 

Bitxor focuses on a public ledger called a blockchain that links blocks together. The entire 
history of transactions is kept on the blockchain. All blocks and transactions within blocks are 
deterministically and cryptographically ordered. The maximum number of transactions per 
block per network can be configured. 
 
 

8.1 Block difficulty 

 
The genesis block has a default starting difficulty of 1014. All difficulties are capped between a 

minimum of 1013 and a maximum of 1015. 
 

The difficulty of a new block is derived from the difficulties and timestamps of the most 
recently confirmed blocks. The number of blocks considered is configurable per network. 
 

If there are less than network: max Difficulty Blocks available, only the available ones are 
taken into account. Otherwise, the difficulty is calculated from the last 
network:maxDifficultyBlocks blocks in the following way:  

 

 
 

 
This algorithm produces blocks with an average time close to the desired network: 
blockGenerationTargetTime Network Configuration. 

 
If the new difficulty is more than 5% higher or lower than the difficulty of the last block, the 

change is capped at 5%. The maximum exchange rate of 5% per block makes it difficult for an 
attacker with significantly less than 50% importance to secretly create a better chain. Since the 
difficulty roughly correlates to the total amount of importance currently being harvested, the 
attacker's secret chain will necessarily have a much lower difficulty. Limiting the maximum 
decrease in difficulty per block means the 
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Figure 18: Development network average block times, with target block time = 15 s 
 
 
the attacker's chain will quickly fall behind the main chain. By the time the difficulty adjusts to 
something more proportional to the importance of the attacker, the main chain will be way 
ahead. The block times will be considerably higher than network:blockGenerationTargetTime 
at the beginning of the attacker's secret chain. 
 
 

8.2 Block Score 

 
A block's score is derived from its difficulty and the time (in seconds) that has elapsed since 

the last block: 
 

score= difficulty − time elapsed since last block (block score) 
 

 

8.3 Block generation 

 
The process of creating new blocks is called harvesting. The collection account gets most of 
the fees from the transactions it includes in a block. This gives the collector an incentive to 
create a valid block and add as many transactions to it as possible. 
 

The fees paid in each block are divided into one of three buckets. When network:harvest-

BeneficiaryPercentage is non-zero, that percentage of fees will be credited to the harvester's 

designated beneficiary. When network:harvestNetworkPercentage is nonzero, that percentage 
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age of the fees will be credited to the specified network of the network: address of the recipient 
of network fees for mining. This account is intended to allow networks to be self-sufficient and 
can be used for incentive programs such as rewarding voting nodes. All other fees will be 
credited to the harvester's account. 
 

An account is eligible to harvest if all of the following are true: 

 
1. The importance score at the last importance recalculation height is non-zero. 

 
2. Balance none other than a network defined by the network:minHarvesterBalance.. 

 
3. Balance no greater than a network defined by network:maxHarvesterBalancetwenty-one. 

 
4. The VRF public key is registered for the account. 

 
The owner of an account can delegate its importance to another account22 to avoid 

exposing a funded private key. 
 

The actual reward a harvester receives can be customized based on network settings. If the 
inflation setting has non-zero values, each harvested block may contain an additional inflation 
block reward. This makes the reward more profitable. If harvest fee sharing is enabled 
(network:harvestBeneficiaryPercentage), the harvester will lose a portion of the fees for the 
node that hosts their harvest key. This makes running network nodes more profitable but 
harvesting less profitable. 
 

Each block must specify a fee multiplier that determines the effective fee to be paid by all 
transactions included in that block. Usually the node owner sets the node: minFeeMultiplier 
that applies to all blocks collected by the node. Only transactions that meet the following will 
be allowed to enter that node's cache of unconfirmed transactions and will be eligible for 
inclusion in blocks collected by that node: 
 

transaction max fee ⩾ minFeeMultiplier · transaction size (bytes) (12) 
 

Rejected transactions can still be included in blocks collected by other nodes with lower 
requirements. The specific algorithm used to select transactions for inclusion in harvested 
blocks is configured using the node:transactionSelectionStrategy setting.Bitxor offers three 
built-in selection strategies23: 

 
 

21 This feature is primarily intended to prevent basic funds and trading accounts from being harvested.  

 
22 In all cases, all available transactions must already meet the node min Fee Multiplier requirement.  
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1. oldest:  
This is the strategy that requires the least resources and is recommended for high TPS 
networks. Transactions are added to a new block in the order they are received. This 
ensures that the oldest transactions are selected first and tries to minimize transaction 
timeout. As a consequence, this strategy rarely maximizes profit for the harvester. 

 
2. maximize-rate:  

Transactions are selected in such a way as to maximize the cumulative fee for all 
transactions in a block. A profit optimization node will choose this strategy. Maximizing 
the total block fee does not necessarily mean that the number of included transactions 
is also maximized. In fact, in many cases, the collector will only include a subset of the 
transactions that are available. 

 
3. minimum fee:  

This strategy first selects the transactions with the lowest maximum fee multipliers. 
Altruistic nodes will choose this strategy along with a very low node: min Fee Multiplier. 
If this setting is zero, then the collector will include transactions with zero fees first. This 
allows users to send transactions that are included in the blockchain for free! In practice, 
only a few nodes are likely to support this. Even with a subset of nodes running, zero-fee 
transactions will still have the lowest probability of being included in a block because they 
will always be supported by the fewest nodes in the network. 

 
Transactions can initiate transfers of static and dynamic amounts. Static quantities are fixed 

and independent of external factors. For example, the amount specified in a transfer 
transaction24 it is static. The exact amount specified is always transferred from the sender to 
the recipient. In contrast, dynamic amounts are variable relative to the average transaction 
cost. They are typically reserved for fees paid to acquire unique network artifacts such as 
namespaces or token. For such devices, a flat fee is not desirable because it would not respond 
to the market. Similarly, the exclusive use of FeeMultiplier of a single block is problematic 
because harvesters could cheat and receive artifacts for free by including records in self-
harvested blocks with zero fees. Instead, a dynamic fee multiplier is used. This multiplier is 
calculated as the median of the FeeMultiplier values in the last  
network:maxDifficultyBlocks blocks. network:defaultDynamicFeeMultiplieris used when there 
are not enough values and as a replacement for zero values. The last adjustment ensures that 
the effective quantities are always different from zero. To arrive at the effective amount,  
the base amount is multiplied by the dynamic fee multiplier. 
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effective amount= base amount dynamic fee multiplier 
 

 

8.4 Block generation hash 

 
The generation hash of a block is derived from the previous block generation hash and the 
VRF proof included in the block: 
 
gh(1) = generationHash                                                                          (generation  hash) 
gh(N ) = verify vrf proof(proof(block(N )), gh(N − 1), VRF public  key of account) 
 
Making the generation hash dependent on a VRF makes it effectively random and 

unpredictable. This is important because it makes the identity of the next harvester unknown 
even to an adversary with perfect information. Until a block is pushed onto the network, its 
generation hash is unknown to all but its collector. Consequently, until the best block is sent to 
the network, since each generation hash depends on the previous generation hash, the input 
in the calculation of the generation hash for the next block is unknown until then. 
 

A VRF public key must be registered on the blockchain before it can be used to collect a 
block. This preregistration requirement prevents an adversary from choosing an arbitrary VRF 
public key that can maximize its impact on the next block. As a result, the opponent cannot 
produce many blocks in an attempt to maximize his hit. 

 

8.5 Block hit and target 

 
To check whether an account can create a new block at a specific network time, the following 

values are compared: 

 

 hit: defines per-block value that needs to be hit.  

 target: defines per-harvester power that increases as time since last harvested block 

increases 
 
 

An account can create a new block each time it hits <target. Since the goal is proportional 
to the elapsed time, a new block will be created after a certain amount of time, even if all 
accounts are unlucky and generate a very high hit. 
 

In the case of delegated collection, the importance of the original account is used instead of 

the importance of the delegated account. 
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The target is calculated as follows25: 

 
block time smoothings can be enabled, which results in more stable block times. If 

enabled, the above multiplier is calculated as follows26: 

 
Hit is 64-bit approximation of 254       where gh is a new generation hash 

First, let's rewrite the above value using log with base 2: 

 
 

Note that is    always < 1, therefore log will always return a negative value.  
now log2                can be rewritten as log2(gh) – record2(2256).  
 

25The implementation uses 256-bit integers instead of floating point arithmetic to avoid any problems 
due to rounding.  

26The implementation uses fixed-point rather than floating-point arithmetic to avoid any problems due 
to rounding. Specifically, 128-bit fixed-point numbers are used where the high 112 bits represent the 
integer part and the low 16 bits represent the decimal part. log2(e) approaches 
14426950408/10000000000. If the calculated power is too negative, smoothing will be set to zero.  

27The implementation uses 128-bit integers instead of floating point arithmetic to avoid any problems 
due to rounding. log2(e) is approximated as 14426950408889634 / 10000000000000000. 
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Eliminating the absolute value and rewriting yields:  

 
 

 

 
 
 
 

This can be further simplified to: 
 

hit= scale · (254 256 − 254 · Log2 (gh)) 

 
The implementation approximates the logarithm using only the first 32 nonzero bits of the 

next generation hash. There is also additional handling for extreme cases. 
 

Also note that hit has an exponential distribution. Therefore, the probability of creating a 

new block does not change if the importance is divided among many accounts. 

 

8.6 Automatic detection of delegated harvester 

 
When user:enableDelegatedHarvestersAutoDetection is set, the server allows other accounts 
to register as delegate harvesters through special transfer messages. The server inspects all 
transfer messages sent to the account that match its node certificate public key and sends 
those that match to a file queue. Periodically, a scheduled task inspects all queued messages. 
Any message that contains unexpected or malformed content is ignored and discarded. Valid 
messages are decrypted and processed. 
 

A main account is eligible28 to delegate mining to a node when all of the following links 

are configured: 
 

• The primary account has signed the proxy collection request. 
 

• The linked remote public key matches the private key of the encrypted linked remote 
harvester. 

 
• The VRF public key matches the encrypted VRF private key. 

 
• The public key of the node matches the public key of the node certificate 

(see12.2:Connection Handshake). 
 

Messages are partially encrypted to prevent an adversary from obtaining VRF private keys 

and remote plaintext harvesters. AES256 GCM is the encryption (symmetric) 
 

28Even if all of these conditions are met, the node owner can still decide not to allow the eligible 
account to delegate collection.  
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scheme used. The encryption key is derived from the server's node certificate key pair and a 

random ephemeral key pair generated by the client. 
 

Each message is expected to have the following contents: 
 

    

Name Size Encrypted? Description 

0xE201735761802AFE 8 byte Nope 
Magic bytes indicating that the message 
is a 

   mining application 

ephemeral public key 32 byte Nope Public key used to derive the symmetric 

   encryption key 

AES-GCM tag 16 bytes Nope MAC tag on encrypted data 

AES GCM IV 12 byte Nope 

Initialization vector for AES GCM 
algorithm 

   swing 

private key signing 32 byte Yes Remote harvester signing private key 

   linked to main account 
VRF private key 32 byte Yes VRF private key linked to the ac- 

   count 
    

 
Table 4: Reward request message format 

 
 

If possible, the server will use the delegated collector's advertised private keys to collect 
blocks. A server can have at most harvesters: max Unlocked Accounts harvesters. Upon 
reaching that limit, the evaluation of any new delegated collector is based on the delegate 
priority policy setting. When the policy is set to Age, previously advertised accounts are 
preferred. As a result, a new delegated collector cannot replace any existing delegated 
collector. When the policy is set to Importance, accounts with the highest importance are 
preferred. As a result, a new delegated collector can replace an existing delegated collector 
with less importance. 
 

Successful announcements are stored in the harvesters.dat file. Accepted delegate 
collectors persist across server restarts. The server does not provide any explicit confirmation 
that it is or is not currently collecting with a specific delegated collector. The blockchain only 
stores a record of all the links related to the delegate collection, but not the actual activity. 
 
 

8.7 Blockchain synchronization 

 
A score can be assigned to any blockchain by adding the scores of the component blocks: 

  (blockchain score) 
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Blockchain synchronization is crucial to maintaining distributed consensus. Periodically, a 

local node will query a remote node about its chain. The remote node is selected from a pool 

of partners based on several factors, including reputation (see13:Reputation). 
 

If the remote node promises a chain with a higher score, the local node tries to find the 
last common block by inspecting the hashes provided by the remote node. When 
deterministic completion is enabled, a binary search is performed to find the last common 
block. The search space is all the hashes between the last completed block and the current 
local height. If successful, the remote node will supply as many blocks as the configuration 
allows. 
 

If the provided string is valid, the local node will replace its own string with the remote 
string. If the provided string is invalid, the local node will reject the string and consider 
the synchronization attempt with the remote node to have failed. 
 

Figure 19illustrates the process in more detail. 
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Figure 19: Blockchain Synchronization Flowchart 
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8.8 Blockchain processing 

 
Execution 
Conceptually, when a new block is received, it is processed in a series of stages29. Before 

processing, the block and its transactions are broken down into an ordered stream of 

notifications. A notification is the fundamental processing unit used in Bitxor. 
 

To extract an ordered stream of notifications from a block, its transactions are decomposed 
in order followed by its block-level data. The notifications produced by each decomposition are 
added to the sequence. At the end of this process, the notification flow fully describes all state 
changes specified in the block and its transactions. 
 

Once the notification flow is prepared, each notification is processed individually. First, it is 
validated regardless of the state of the blockchain. It is then validated against the current state 
of the blockchain. If any validation fails, the containing block is rejected. Otherwise, the changes 
specified by the notification are made to the state of the blockchain in memory, and the next 
notification is processed. This sequence allows transactions in a block to depend on changes 
made by previous transactions in the same block. 
 

After all notifications produced by a block are processed, Receipts Hash (see7.2.4: receipt 
hashes) Y Hashed State (watch 7.3: state hashes) the fields are calculated and checked to 
see if it is correct. It is important to note that when network: enable Verifiable State is 
enabled, this is the point at which all Patricia state trees are updated. 
 

Back 

 
Occasionally, it is necessary to undo a block that has been previously committed. This is 
necessary to allow resolution of the fork. For example, to replace a worse block with a better 
block. In Bitxor, at most network: max Rollback Blocks can be rolled back at a time.  
Forks larger than this setup are irreconcilable. 
 

When a block is reverted, it breaks down into an ordered stream of notifications. This stream 
is inverted relative to the stream used during execution. Since transactions in a block can 
depend on changes made by previous transactions in the same block, they must be rolled back 
before their dependencies are rolled back. 
 

Once the notification flow is prepared, each notification is processed individually. No 
validation is needed because the rollback operation returns the blockchain to a previous state 
that is known to be valid. Instead, the changes specified by the notification are simply rolled 
back from the blockchain's state in memory and the next notification is 
 

29A more detailed description of these stages can be found in9.1:consumers.  
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processed. 
 

After all notifications produced by a part of the blockchain are processed, the previous state 
of the blockchain is restored. When network: enable Verifiable State is enabled, the in-memory 
state hash still needs to be updated. Instead of individually applying all tree changes, the in-
memory state hash is forcibly reset to the state hash of the common block before the last 
reverted block. 
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9 Disruptor 
 
 

ONE main objective of Bitxor is to achieve high performance. To help achieve 
this target, the disrupter30 pattern is used to do most of the data processing. A disruptor 
uses a ring buffer data structure to hold all the elements they need 

processing. New items are inserted into the next free slot in the ring buffer. Fully rendered 
items are removed to make room for new items. Since the ring buffer has a finite number of 
slots, it can run out of space if processing cannot keep up with new inserts. the behavior of 
Bitxor, in which case it can be configured to exit the server or discard new data until space is 
available.  

 circular buffer 
 

 

18 
 occupied slots 

  
 

  1 
 

 17  2 
 

free sites 
16  3 

 

15 

 

4 

 

  
 

 14  5 
 

 13  6 
 

next free 
space 12  7  

  
 

 11  8 
 

 10  9 
  

 

Each item in the circular buffer is processed by one or more consumers. Each consumer 
takes a single element as input. Some consumers compute the data from the input and attach 
it to the element, while others validate the element or modify the state of the global chain using 
the element's data. Some consumers rely on work done by previous consumers. Therefore, 
consumers must always act on input elements in a predefined order. To guarantee this, each 
consumer has an associated barrier. The barrier prevents a consumer from processing an item 
that has not yet been processed by its immediately preceding consumer. The last consumer 
reclaims all memory that was used during processing. 
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Consumers can set an item's completion status to CompletionStatus::Aborted if it is already 
known or invalid for some reason. Subsequent consumers ignore the overridden elements.  

   Consumer 1  consumer 2   Consumer 3    
 

    Barrier   Barrier    Barrier recover the 
memory 

 

 

Consumer 1 

 

consumer 2 

  

Consumer 3 

 
 

       Consumer 
 

                       
 

14 13 12 11 10  9  8 7  6 5 4 3  2 1  
 

                       
  

 
 

9.1 Consumers 

 
In Bitxor, a block disruptor is used to process incoming blocks and parts of the blockchain. A 

part of the blockchain is an input element made up of multiple blocks. This disruptor is primarily 

responsible for validating, reconciling, and growing the blockchain. 
 

A transaction disruptor is used to process unconfirmed incoming transactions. Transactions 

that are fully processed are added to the uncommitted transaction cache. 
 

All disruptors are associated with a chain of consumers that do all the processing of their 

input elements. The different disruptors are personalized by using different consumer strings. 

All consumers can inspect the data being processed, and some can modify it. 
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Audit Consumer (optional) Audit Consumer (optional) 

Hash Calculator Consumer Hash Calculator Consumer 

Hash Check Consumer Hash Check Consumer 

Blockchain Check Consumer  

Stateless validation consumer Stateless validation consumer 

Batch Signature Consumer Batch Signature Consumer 

Blockchain Sync Consumer  

Blockchain Sync Cleanup  
Consumer (optional)  

  
new block consumer 

 
(a) Consumer Block 

 
New transaction consumer 
 
(b) Consumer Transactions 

  
Figure 20: Bitxor consumer chains 

 

 
9.1.1 Common Consumers 

 
Block and transaction disruptors share a number of consumers. 
 
 

Audit Consumer 

 
This consumer is optional and can be enabled through node configuration. If enabled, all new 
items are written to disk. This makes it possible to reproduce the incoming network action and 
is useful for debugging. 

 

Hash calculator and hash check consumers 

 
It is very common for a server to receive the same item many times because networks consist 
of many servers transmitting items to multiple other servers. For performance reasons, it is 
desirable to detect at an early stage if an item has already been processed to avoid processing 
it again. 
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The hash calculator consumer computes all hashes associated with an item. The hashes 
are used by the hash check consumer to search the recent cache, which contains hashes of 
all recently viewed items. The consumer used by the transaction disruptor will also search the 
hash cache (which contains hashes of confirmed transactions) and the cache of unconfirmed 
transactions. If the hash is found in any cache, the item is marked as 
CompletionStatus::Aborted and further processing is skipped. 

 

Stateless validation consumer 

 
This consumer handles state-independent validation by validating each entity in an element.  
This can be done in parallel using many threads. Every plugin can add stateless validators. 
 

An example of stateless validation is the validation that a block does not contain more 
transactions than the network allows. This verification depends on the network configuration, 
but not on the global state of the blockchain. 

 

Batch Signature Consumer 

 
This consumer validates all the signatures of all the entities in an element. This is separate 
from the stateless validation consumer because it uses batch verification. To improve 
performance, this consumer processes many signatures at once in a batch instead of 
individually. This can be done in parallel using many threads. 

 

memory recall consumer 

 
This consumer completes the processing of an item and frees all memory associated with it. 
Triggers downward propagation of the states of all transactions that were updated during 
processing. The overall result of the sync operation is used to update the reputation of the sync 
partner (and possibly ban it) (see13:Reputation)). 

 

9.1.2 Additional Block Consumers 

 
The block disruptor also uses some specific block consumers. 
 
 

Blockchain Check Consumer 

 
This consumer performs integrity checks independent of the state of the portion of the string 

contained within an element. Check that: 
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• The chain part is not made up of too many blocks. 

 
• The timestamp of the last block in the chain part is not too far in the future. 

 
• All blocks within the part of the chain are linked. 

 
• There are no duplicate transactions within the chain part. 

 
 

Blockchain Sync Consumer 

 
This consumer is the most complex. All tasks that require or modify the state of the local server 

chain are performed on this consumer. 
 

First, it checks that the new part of the chain can be joined to the existing chain. If the part 
of the chain joins a block that precedes the tail block, all blocks starting with the tail block are 
rolled back in reverse order until the common block is reached. 
 

It then executes each block by performing stateful validation and then watching for changes. 
Stateless validation is skipped because it was performed by previous consumers. If there are 
any validation errors, the entire part of the string is rejected. Otherwise, all changes are 
committed to the state of the chain (both block storage and caching) and the cache of 
uncommitted transactions is updated. 
 

Finally, this consumer determines the last completed block, which is the newest block that 
cannot be rolled back. When probabilistic completion is enabled, the last completed block is 
network:maxRollbackBlocks before the last block. When deterministic completion is enabled, 
the last completed block is the block referenced in the last completion test. The consumer strips 
the global state of the blockchain of any and all data that is only needed to allow rollbacks to 
blocks prior to the last completed block. 
 

This consumer is the only part of theBitxor system that modifies the state of the chain and 

needs write access. 

 

Blockchain sync cleanup consumer 

 
This consumer is optional and can be enabled through node configuration. If enabled, removes 
all files created by Blockchain Sync Consumer. This consumer should only be enabled when 
a server is running without a broker. 
 
 
 
 
 
 

 

Page 59 of 115 



 

 

New block consumer 

 
This consumer forwards individual blocks, either collected by the server or sent from a 

remote server, to other servers on the network. 

 

9.1.3 Additional Transaction Consumers 

 
The transaction disruptor uses a single transaction-specific consumer. 
 
 
New transaction consumer 

 
This consumer forwards all transactions that have valid signatures and have passed stateless 
validation to the network. Stateful validation is not performed on transactions until they are 
added to the uncommitted transaction cache. Forwarding is done intentionally before stateful 
validation because a server may reject transactions that could be accepted by other servers 
(for example, if the transaction has a fee too low for the local server). Subsequently, a stateful 
validation of the forwarded transactions is performed and the valid ones are stored in the 
uncommitted transaction cache. 
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10 Unconfirmed transactions 

Any transaction that is not yet included in a block is called a unconfirmed transaction. 

These transactions may be valid or invalid. Unconfirmed valid transactions are eligible 
for inclusion in a harvested block. Once a transaction is added to a block that is accepted on 
the blockchain, it is confirmed. 

 
Unconfirmed transactions can reach a node when: 

 
1. A client sends a new transaction directly to the node. 

 
2. A linked aggregate transaction is completed with all required joint signatures and is 

promoted from the partial transaction cache. 
 

3. A Peer node transmits transactions to the node. 
 

4. A Peer node responds to the node's request for unconfirmed transactions. As an 
optimization, the requesting node indicates which transactions it already knows about to 
avoid receiving redundant transactions. Additionally, it provides the minimum rate 
multiplier that you use when creating blocks. This prevents the remote node from 
returning unconfirmed transactions that will be immediately rejected by the requesting 
node. 

 
When an unconfirmed transaction reaches a node, it is added to the transaction disruptor. 

All transactions that have not been previously seen and pass stateless validation will be 
broadcast to the peer nodes. At this point, it is still possible for the node to reject transmit 
transactions because stateful validation is performed after transmission. Due to different node 
configurations, it is possible that some nodes will accept a specific unconfirmed transaction 
and other nodes will reject it. For example, nodes could have different node settings: min Fee 
Multiplier. 
 
 

10.1 Unconfirmed transaction cache 

 
When a transaction passes all validation, it is eligible for inclusion in a harvested block. At this 
point, the node tries to add it to the cache of uncommitted transactions. This can fail for two 
reasons: 
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1. The maximum cache size configured by node has been reached: unconfirmed 

Transactions Cache Max Size. 
 

2. The cache contains at least as many unconfirmed transactions as can be included in a 

single block, and the new transaction is rejected by the spam regulator. 
 

Every time new blocks are added to the blockchain, the state of the blockchain changes and 
the cache of unconfirmed transactions is affected. Although all transactions in the cache are 
valid at the time they are added, this does not guarantee that they will be valid in perpetuity. 
For example, a transaction may already have been included in a block collected by another 
node or a conflicting transaction may have been added to the blockchain. This means that 
transactions in the cache that were previously perfectly valid could become invalid after 
changes in the state of the blockchain. Also, when blocks with transactions are reversed, some 
of those previously confirmed transactions may no longer be included in any blocks on the new 
chain. 
 

As a result of these considerations, the entire cache of unconfirmed transactions is 
completely rebuilt every time the blockchain changes. Stateful validators recheck each 
transaction and purge it if it has become invalid or has already been included in a block. 
Otherwise, it is added back to the cache. 
 
 

10.2 Spam Accelerator 

 
The initiator of an unconfirmed transaction does not have to pay a fee to the nodes that hold 
the transaction in the unconfirmed transaction cache. Since the cache uses valuable resources, 
a node must have some protection against spam with many unconfirmed transactions. This is 
especially important if the node is generous and accepts zero-fee transactions. 
 

Simply limiting the number of unconfirmed transactions a node accepts is not optimal 
because normal actors should still be able to send a transaction even when a malicious actor 
is spamming the network. Limiting the number of unconfirmed transactions per account is also 
not a good option because accounts can be freely created. 
 

Bitxor implements a smart throttle that prevents an attacker from filling the cache 
completely with transactions while allowing honest actors to successfully submit new 
unconfirmed transactions. node: enable Transaction Spam Throttling can be used to activate 
the throttle. Assuming the cache is not full, it works like this: 
 

1. If the cache contains fewer uncommitted transactions than can be included in a single 

block, the throttling is ignored. 
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2. If the new transaction is a linked aggregate transaction, the limitation is ignored. 

 
3. Otherwise, the spam throttle is applied. 

 
Let cur Size be the current number of transactions in the cache and max Size be the 

maximum configured size of the cache. Also let rel. importance of A is the relative importance 
of A, that is, a number between 0 and 1. If a new unconfirmed transaction T arrives with signer 
A, then the fair share of account A is calculated:  

 
 

If account A already has as many transactions in the cache as its fair share, then the new 
transaction is rejected. Otherwise, it is accepted. The formula shows that an increase in the 
maximum fee for a transaction increases the amount of available cache space. However, this 
mechanism for enhancing effective transcendence is limited by  
node: transactionSpamThrottlingMaxBoostFee.  
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Figure 21: Fair distribution of several effective weights with maximum cache size = 
10000 

 
Figure 21 shows the fair share of slots relative to cache fill level for various actual 

importance. An attacker trying to occupy many slots cannot gain much by using many accounts 
because the importance of each account will be very low. The attacker can increase the 
maximum transaction fees, but that will be more expensive and will spend the funds at a faster 
rate. 
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11 Partial transactions 
 

Bonded aggregate transactions (see 6.2: Added transaction) are also 

referred as partial transactions. The partial name is appropriate because the 
transactions have insufficient joint signatures and cannot pass validation until there are 
more joint signatures.  

They are collected. 
 

The partial transaction extension provides support for handling partial transactions. If a 
network supports linked aggregate transactions, this extension must be enabled on all API and 
Dual nodes. 
 

Partial transactions are synchronized between all nodes in a network that have this 
extension enabled. A node passively receives partial transactions and joint signatures 
powered by remote nodes. It also periodically requests transactions and joint signatures from 
remote nodes through the extract partial transactions task. As an optimization, the requesting 
node indicates which transactions and joint signatures it already knows to avoid receiving 
redundant information. 
 

When the hash lock plugin is enabled, in order for the network to accept a partial transaction, 
a hash lock must be created and associated with the transaction. The hash lock is essentially 
a paid bonus to be able to use the built-in co-signature collection service. If the associated 
partial transaction is completed and confirmed on the blockchain before the hash lock expires, 
the bonus is returned to the payer. Otherwise, the bond is forfeited to the harvester of the block 
on which the lock expires. This feature makes spamming the partial transaction cache more 
expensive because it requires node:lockedFundsPerAggregate to be paid, at least temporarily, 
for a partial transaction to enter the cache. 
 

When a node receives a new partial transaction, it is sent to the partial transaction dispatcher. 

Received joint signatures are checked against partial transactions already in the cache and are 

immediately rejected if there are no matching transactions31. When transactions and joint 

signatures are received together, they are split up and processed individually as noted above. 
 

Compared to normal transaction dispatcher (see9.1:consumers), the partial transaction 

dispatcher is minimalist. 
 

31 This implies that a partial transaction must be present in the cache before any of their joint signatures can be accepted.  
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Hash Calculator Consumer 

 

Hash Check Consumer 

 

New transaction consumer 
 

Figure 22: Partial Transaction Consumers 
 

 
The hash calculator and hash check consumers work as described for the transaction 

dispatcher in9.1.1:Common Consumers. The only difference is that the hash verification 
consumer will additionally search the partial transaction cache for previously seen transactions. 
The new transaction consumer has a similar purpose as described in9.1.3:Additional 
Transaction consumers. The difference is that it transmits and processes partial transactions 
instead of unconfirmed transactions. Specifically, it broadcasts partial transactions to the 
network and then adds valid ones to the cache of partial transactions. 

 

11.1 Partial Transaction Processing 

 
The partial transaction cache contains all partial transactions that are waiting for additional 
signatures. When a new partial transaction is received that passes all validations, it is added 
to the cache. It will remain in the cache until a sufficient number of joint signatures are collected 
or until it becomes invalid. For example, the transaction will be purged if its associated hash 
lock expires. Whenever a partial transaction is completed by collecting enough co-signatures, 
it will be immediately sent to the transaction dispatcher and processed as an unconfirmed 
transaction. 
 

The partial transaction cache collects all new co-signatures with the transactions it already 
contains. To be added to the cache, a joint signature must be new, verifiable, and associated 
with an existing partial transaction. It is possible for a previously accepted joint signature to 
become invalid, in which case it should be removed. For example, a co-signature could 
become invalid if its signer was removed from a multi-signature account that is involved in the 
partial transaction. The cosignature collection process is complex enough to handle these edge 
cases. 
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Figure 23: Processing a partial transaction 
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Figure 24: Processing of a joint signature 
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12 The net 
 

Dinamic node discovery enables the growth of a peer-to-peer network. Bitxor 
implement this dynamic discovery in the node discovery extension. Public networks are 

usually open and allow any node to join. Private networks can restrict the nodes that can join 
and behave as a federated system32.Bitxor  

it is flexible enough to allow even private networks to specify all node relationships via 

configuration files. 
 

Bitxor supports a configurable node identification policy configured by the network: 
nodeEqualityStrategy. Valid policies allow a node to be identified by its resolved IP (host)33 or 
public boot key (public-key). The former is preferred for public networks. 

 

12.1 Beacon nodes 

 

A newly started node is initially isolated and not connected to any peer. You need to join a 
network before you can make meaningful contributions, like validating or collecting blocks. In 
Bitxor, a list of static beacon nodes is stored in a peer configuration file. To join a network, a 
new node first connects to these nodes. These files do not need to be identical on every node 
on a network. 
 

A public network is recommended for specifying a set of HA beacon node candidates. Each 
node's peer configuration file should contain a random subset of these nodes. The random 
subset can be selected once before connecting to the network for the first time or more 
frequently before each boot. The important thing is that the beacon nodes are well distributed. 
This reduces stress on individual beacon nodes and makes DoS attacks on beacon nodes 
more difficult. These nodes have a slight preference in node selection (see13.2:Weight based 
node selection) relative to non-beacon nodes because they are assumed to be highly available. 
No other special privileges or responsibilities are conferred on them. They can be considered 
as doors to the network. 
 

Certain extensions may require their own set of beacon nodes. For example, the partial 

transaction extension stores its own set of beacon nodes in a separate peer configuration 

 
 

32By careful distribution of tokens and reward, a private network can delegate permissions to different 
accounts. For example, only accounts that own enough mining tokens can create blocks, and only 
accounts with a non-zero currency can initiate transactions with different fees.  

33A node's resolved IP is only broadcast to other nodes when you don't specify a hostname. 
Hostnames are preferentially propagated to support nodes with dynamic IP addresses. 
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proceedings. Nodes with this extension enabled need to additionally synchronize partial 

transactions between other nodes that also have this extension. 
 

A node's roles specify the capabilities that it supports. These are typically used by a 
connecting node to choose the appropriate partners. Nodes with the Peer role support basic 
synchronization. Nodes with the API role support partial transaction synchronization. Nodes 
with the voting role participate in the completion voting procedure when deterministic 
completion is enabled. Nodes with the IPv4 feature support IPv4 communication. Nodes with 
the IPv6 role support IPv6 communication3. 4. The roles are not mutually exclusive. Nodes can 
support multiple roles. 
 
 

12.2 connection handshake 

 
All connections between Bitxor nodes are built on top of TLS v1.3 with a custom verification 
procedure. Each node is expected to have a deep two-tier X509 certificate chain made up of a 
root certificate and a node certificate. All certificates must be X25519 certificates. Bitxor it 
does not support any other type of certificate. 
 

The root certificate is expected to be self-signed with an account's signing private key. This 
account is assumed to be the sole owner of a node. The cryptographic linking of a node and 
an account allows the selection algorithms to perform a weighting of nodes based on the 
importance of the node owner. In addition, partner nodes use this verified identity for reputation 
checking (see13:Reputation) information35 . It is important to note that this certificate is only 
used to sign the node certificate. For security, your private key should not be stored on a 
running server. 
 

The node certificate is signed by the root certificate. It can contain a random public/private 

key pair. This certificate is used to authenticate TLS sessions and obtain shared encryption 

keys to encrypt optional data.36. It can be rotated as many times as desired. 
 

This authentication procedure is performed by each associated node independently. If any 

of the nodes fails the handshake, the connection is terminated immediately. 
 

34 If a node does not explicitly specify an IPv4 and/or IPv6 role, it is assumed that it only supports IPv4 communication. 

 

35 In the public network, nodes are primarily identified by their resolved IP.  

36 Currently, the only derived encryption key is the one used to encrypt and decrypt messages related to the automatic 
detection of delegated collectors (see8.6:Automatic detection of delegated harvester).  
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12.3 packages 

 

Bitxor uses TCP for network communication on the port specified by node: port. The 

communication is centered around a higher level packet model in addition to and is distinct 
from TCP packets. All packets begin with an 8-byte header that specifies the size and type of 
each packet. Once a complete package is received, it is ready for further processing. 
 

0 1 2 3 4 5 6 7   
0x00 Size Write 

 

Figure 25: Packet Header Binary Layout 
 

 
A combination of long-term and short-term connections are used. Long-lived connections 

are used for repetitive activities like synchronizing blocks or transactions. They support both 
push and request/response semantics. Connections are allowed to last for 
node:maxConnectionAge selection rounds (see13.1:Connection Management) before they are 
eligible for recycling. Connections older than this setting are recycled primarily to allow direct 
interactions with other partner nodes, and secondarily as a precaution against zombie 
connections. 
 

Short-lived connections are used for more complex multistage interactions between nodes. 
For example, they are used for node discovery (see12.6:Node discovery) and time 
synchronization. Short-lived connections help prevent out-of-sync, which can occur when all 
long-lived connections are in use and no sync partners are available. 
 

Handlers are used to process packets. Each handler is registered to accept all packets with 
a specific packet type. When a complete packet is ready for processing, it is sent to the 
controller registered with its type. All controllers must accept matching packets for processing. 
Some drivers can also write response packets to allow request/response protocols. 
 
 
12.4 connection types 

 
In Bitxor, long-term connections are primarily identified as readers or writers. This is 
orthogonal to whether they are incoming or outgoing. They are secondarily identified by 
purpose, or service identifier37. This allows connections to be selected by capacity and more 
granular logging. 
 

37Although the terminology is similar, these are not related to the services described in2.2:Bitxor 
Extensions.  
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Reader connections are mostly passive and are used to receive data from other nodes. Each 

server reads asynchronously from each reader connection. Every time a new packet is 
received in its entirety, it is sent to an appropriate controller. If no matching driver is available, 
the connection is closed immediately. 
 

The node:maxIncomingConnectionsPerIdentity limit applies to all long-lived and short-lived 
connections and services. Any incoming connection above this limit will be closed immediately. 
This limit can be reached when multiple short-lived connections are initiated to the same 
remote node for different operations. This is most likely when connection tasks are scheduled 
more aggressively immediately after a node starts. These errors are usually transient and can 
be safely ignored if they do not persist. 
 

Writer connections are more active and are used to send data to other nodes. Broadcast 
operations send data to all active and available writers. Additionally, writers can be individually 
selected and used for request/response protocols. To simplify recipient processing, writers 
participating in an ongoing request/response protocol do not receive broadcast packets. 
 

Service IDs are only assigned to long-lived connections. The synchronization service is used 
to manage outgoing connections to nodes with the Peer role. The API Partial Service is used 
to manage outgoing connections to API role nodes. The readers service is used to manage 
incoming connections. The API writers service is experimental and allows incoming 
connections on the port node: apiPort to be registered as writers. 
 

identifier Name Address   
0x50415254 pt writers outgoing  
0x52454144 readers coming  
0x53594E43 sync oytgoing  

 
Figure 26: Service Identifiers 

 

 
For the purposes of node selection described in13.2:Weight based node selection, age, and 

node selection are scoped by service. Reputation information is aggregated across all 
services. Specifically, suppose that one node has made a partial sync and API connection to 
another node. Each connection can have a different age because the age is defined per 
service. Interaction results, from any connection, are always attributed to the node, not the 
service. 
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12.5 Origin of peers 

 
A node collects data about all the nodes on its network. The reputation of the data depends 

on its origin. The possible sources, ordered from best to worst, are: 
 

1. Local: The node is specified in node:localnode. 
 

2. Static – The node is in one of the peer configuration files. 
 

3. Dynamic: The node has been discovered and is supporting connections. 
 

4. Dynamic input: the node has made a connection but does not support connections. 

 
It is important to note that the distinguishing feature of a static node is that it appears in at 

least one local peer configuration file. For emphasis, it is possible for one partner to see a node 
as static while another partner sees it as dynamic. Except for the local node, all other nodes 
are dynamic. You are entering a subset of dynamic nodes. These nodes have only been seen 
on incoming connections but not outgoing. As a result, their preferred port is unknown and they 
cannot connect. 
 

Existing node data can only be updated if the new data is not from a worse provenance than 
the existing data. For example, updated information about a static node sourced dynamically 
is discarded, but updated information about a dynamic node sourced dynamically or statically 
is allowed. 
 

The above is a slight simplification due to how connections are actually handled. When a 
node completely disconnects from a remote node and reconnects, the upgrade can be a two-
step process. Consider a dynamic node trying to reconnect to a remote with a different identity 
public key. When the node initiates a connection, the remote will classify the connection as 
dynamic incoming, which has worse provenance than dynamic. As a result, the remote will not 
update the node information. Instead, it will set a flag indicating a possible identity update in 
progress. Later, when the remote connects directly to the node, it will get the same updated 
information as before. In this point, the remote will update the information even if there is an 
active connection (dynamic incoming) because an identity update in progress was previously 
detected. Without this flag, the active connection from the worst source would block updates, 
which is not desirable. 
 

When network:nodeEqualityStrategy is a public key, the secondary identity component is 
the resolved IP. When there are no active connections, this is allowed to change. This strategy 
does not support reputation migration. 
 

When network:nodeEqualityStrategy is host, the secondary identity component is the 

identity public key of the node. When there are no active connections, this is allowed to 

change. 
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The IP Resolved parent identity component can also be changed when there are no active 
connections, assuming the child identity component is not changed. In this case, all reputation 
data associated with the original host is migrated to the new host. When there is an ambiguous 
match, the data with the matching parent identity component is migrated and the data with the 
matching child identity component is discarded. 
 
 

12.6 Node discovery 

 
After starting, a node attempts to establish short-lived connections to all static nodes that it has 
loaded from its peers' configuration files. These connections are primarily intended to retrieve 
the resolved IP addresses of all static nodes. This allows host names to be used in peer 
configuration files and simplifies node management. As long as the node is running, this 
procedure is repeated periodically with a linear backtracking. 
 

Periodically, a node will transmit identifying information about itself to its remote partner 
nodes. The remote will process the received payload and check its validity and compatibility. 
To be valid, the identity public key specified by the node must match the public key of its X509 
root certificate. To be compatible, both transmitting and receiving nodes must point to the same 
network. If no hostname is provided, the resolved IP of the node will be used. If all checks are 
successful, the node will be added as a new potential partner and will be eligible for selection 
in the next sync round. 
 

Periodically, a node will request all known peers from its remote partner nodes. Remote 
nodes will respond with all of their static and dynamic peers active. For the requesting node, 
all of these will be treated as dynamic nodes. The original node will request the identification 
information of each of these nodes directly. This direct communication is necessary to prevent 
a malicious actor from passing false information about other nodes and to ensure that a 
connection can be established with each new node. The originating node will process the 
received payload and verify its validity and compatibility as stated above. If all checks are 
successful, the new node will be added as a potential new partner and will be eligible for 
selection in the next sync round. 
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13 Reputation   

Bitxor uses a peer-to-peer (P2P) network. P2P networks have the great 

advantage to be robust because they cannot be turned off by removing a single node. 
However, a public network comes with its own challenges. Network participants are 

anonymous and anyone can join. This makes it very easy to inject hostoken  
nodes on the network that spread invalid information or try to disrupt the network in some way. 
 

There is a need to identify hostoken nodes and reduce communication with them. There 
have been many approaches to accomplish this. One of the most successful is building a 
reputation system for nodes. Bitxor follows this approach by implementing a simple 
reputation system. This system attempts to prioritize connections to nodes that behave well 
over those to nodes that behave poorly. Importantly, reputation does not affect blockchain 
consensus at all. It only influences the network graph. This chapter describes the heuristics 
used. 
 
 

13.1 Connection Management 

 
Each node can establish at most node:maxConnections persistent connections at a time. This 
limit is expected to be much smaller than the hundreds of thousands of nodes that make up the 
network as a whole. To prevent groups of isolated nodes from forming, a node will periodically 
drop existing connections to make room for new connections to different nodes. 
 

In determining which nodes to disconnect from, a node inspects the ages of all its 
connections. To minimize connection overhead, only connections that have been established 
for at least node:maxConnectionAge rounds are eligible for removal. The next time a node 
selection round is performed, these connections are discarded and replaced with new 
connections to other nodes. This ensures that over time each node will establish connections 
to many different nodes on the network. 
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13.2 Weight based node selection 

 
Nodes communicate with each other primarily through the current persistent connections they 
have established. A node can query another node for new transactions or blocks, or request a 
list of other nodes that the associated node has interacted with. Nodes can also voluntarily 
send data to other nodes. Each communication between nodes is considered an interaction, 
and each interaction is scored as successful, neutral, or failed. For example, when a remote 
node sends new valid data, the interaction is considered successful because it has contributed 
to the synchronization of the two nodes. If the remote node has no new data, the interaction is 
neutral. Otherwise, the interaction is considered failed. 
 

Each node keeps track of the results of its own interactions with other nodes. These results 
are only used locally and are not shared with other nodes. A node's interactions with other 
nodes influence which partner nodes it selects. Interaction results are stored for a maximum of 
one week, but are reset when the node is rebooted. These results are time-bound to allow 
nodes that have transient failures to reestablish themselves as good partners. 
 

When selecting associated nodes, a node first determines a set of candidate nodes. Each 
candidate node is assigned a raw weight between 500 and 10,000 according to the following 
criteria: 

 

 If there were 3 or fewer non-neutral interactions with the remote node, it is given a mean 

raw weight of 5000. This gives new nodes a good chance of being selected. 
 

 Otherwise, let s be the number of successful interactions and f the number of failed 

interactions. Then the gross weight is calculated by the following formula: 

 
This formula ensures that failed interactions rapidly decrease the weight of a remote node 

and its probability of being selected. The presence of a minimum score still gives a heavily 
failed node a small chance of being selected and possibly improving its score with more 
interactions. 
 

The raw weight is multiplied with a weight multiplier to give the final weight of a node. For 
static nodes, the multiplier is 2. For dynamic nodes, it is 1. If a node is banned due to 
consecutive interaction failures (see13.3:node ban), the multiplier is reduced by 1. This ensures 
that a node does not connect to dynamic forbidden nodes. The chance to connect to static 
forbidden nodes is halved. 
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Figure 27: Raw Node Weight 

 
 

Elimination candidates are determined based on their connection age. Each kill candidate 
to be closed is replaced with a connection to a new node so that the node maintains the desired 
level of connections. Finally, for each free space, a candidate node has the possibility of being 
selected given by: 

  
 

13.3 Node Banning 

 
In a public network there could be potentially malicious nodes trying to disrupt normal network 

processing. Therefore, if a node deems a remote node to be malicious, it will prevent 

connecting to that node and will not accept incoming connections from it. 
 
The ban is applied at the node level and is attached to a node's network scope identifier Page 

76 of 115 



 

 
(watch12.6:Node discovery). A misbehaving node will be immediately banned for a period of 
node:defaultBanDuration. Even after a node is no longer actively banned, the local node will 
remember for some time (node:keepAliveDuration) that the node was misbehaving and will 
treat repeated violations more severely by banning the node for longer periods up to 
node:maxBanDuration . During the ban, no connections will be established with the banned 
node. After the ban expires, the node is again treated as a normal interaction partner. There 
are several scenarios where a remote node will be banned. Penalties vary depending on the 
cause. 
 

     
 

 Connection 
Remote Remote Remote 

 

 they can can be able to send  

 

closed 
 

 reconnect selected data  

  
 

      

Consecutive   yes static 
 

 

Interaction Nope - Yes  

no dynamic 
 

failures 
   

 

    
 

      

Invalid 
If all38 Nope Nope Nope 

 

data  

    
 

      

Exceeded 
If all Nope Nope Nope 

 

read rate  

    
 

      

Unexpected 
Yes Yes 

Yes Yes 
 

data (after reconnect) (after reconnect)  

  
 

      

 
Figure 28: Ban Rules 

 
 
 
 
Consecutive interaction errors 

 
If interactions with the same node fail too many times in a row due to network or state failures, 
it's best to suspend all interactions with that node for a while, in the hope that the node will 
behave better in the future. The number of consecutive interaction failures before the node is 
banned as an interaction partner can be configured. The amount of time the node is locked is 
measured in selection rounds and can also be configured. As long as the node is banned, it 
will not be actively selected as an interaction partner, but it can still send new data. This 
violation therefore only results in a partial ban. 
 

38 All active connections associated with the misbehaving node are closed immediately, not just the connection that triggered 

the violation. 
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invalid data 

 
The data may be invalid in many ways. For example, if a remote node is on a fork, it might 
send a new block that doesn't fit into the local node's chain. Small forks one or two blocks deep 
occur frequently. Although the data sent is invalid, it is not considered malicious because the 
internal state of the remote node was understandably different. On the other hand, sending 
data with invalid signatures clearly indicates that the remote node is malicious because 
signature verification is independent of a node's state. The same goes for other verification 
failures that do not depend on the state of a node. In all such cases, the remote node is 
prohibited. 
 
 
Data read rate exceeded 

 
Each node monitors the read speeds of all sockets that accept data from its peers. This allows 
a node to detect when a faulty peer is producing an unexpected amount of data. If the data 
read during a configured time interval exceeds a maximum, the socket is closed and the node 
is banned. The maximum read rate is configurable. 

 

Receive data unexpectedly 

 
There are situations during node communication where the local node does not expect to 
receive any data from the remote. If the remote still sends data in such a situation, it is violating 
the protocol and the connection is closed. In this case, the connection is closed immediately 
but there is no persistent node ban. 
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14 Consensus   

Byzantine consensus is a key problem they face all decentralized 

systems. Essentially, the crux of the problem is finding a way to get independent 
actors to cooperate without cheating. The innovation Bitcoin key was a solution to 
this issue that is based on Proof of Work (PoW). After each new is accepted block 
on the main Bitcoin chain, all the miners start a competition to find the next block. 
All miners have incentives to extend the chain instead of the forks because the 
chain with the greatest cumulative power of hashing is the reference string. Miners 
calculate hashes as fast as possible until one produces a candidate block with a 
hash below the current target of network difficulty. The probability that a miner will 
mine a block is proportional to the hash rate of the miner relative to the total hash 
rate of the network. this leads necessarily to a computational arms race and 
consumes a lot of electricity. 

 
 

Proof of Stake (PoS) Blockchains were introduced after Bitcoin. They presented an 
alternative solution to the Byzantine consensus problem that did not require significant power 
consumption. Basically, these chains behaved similarly to Bitcoin with one important 
difference. Instead of predicating the probability of creating a block on a node's relative hash 
rate, the probability is based on a node's relative share of the network. Since richer accounts 
can produce more blocks than poorer accounts, this scheme tends to allow the rich to get 
richer. 
 

Bitxor uses a modified version of PoS that attempts to grant users preferably in relation to 

hoarders. It strives to calculate a holistic score of an account's importance without sacrificing 
performance and scalability. 
 

There are multiple factors that contribute to a healthy ecosystem. All things being equal, 
accounts with larger stakes that transact more and run nodes have more stake in the game 
and should be rewarded accordingly. First, accounts with larger balances have larger shares 
in the network and have greater incentives for the ecosystem as a whole to succeed. The 
amount of currency an account holds is a measure of its holding. Second, accounts should be 
encouraged to use the network by conducting transactions. Network usage can be 
approximated by the total amount of transaction fees paid for an account. Third, accounts 
should be encouraged to run nodes to strengthen the network. This could be 
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approximated by the number of times an account is a beneficiary of a block39. Since the node 
owner has full control over their beneficiary definition, any benevolent node owner can 
alternatively push this measure for a third party. 
 

Importances are recalculated every network: importance grouping blocks. This reduces the 
pressure on the blockchain because calculating importance is relatively expensive and 
processing each block would be prohibitively expensive. Additionally, recalculating weights 
periodically allows for automatic aging of the state. In general, it is beneficial to calculate the 
weights periodically rather than every block. 
 

To encourage good behavior, accounts active in an older time period should not gain an 
eternal advantage due to previous virtuous behavior. Instead, importance boosts granted by 
transactions and node scores are time-limited. The impulse lasts five 
network:groupingimportanceintervals 
 

 

14.1 Weighting algorithm 

 
All accounts that have a balance of at least network:minHarvesterBalance participate in the 
importance calculation and are called high value accounts. Note that this set of accounts is a 
superset of the set of accounts eligible for block generation (see8.3:Block generation). In other 
words, a non-zero importance at the most recent importance recalculation is a necessary but 
not sufficient condition for block generation. 
 

An account's importance score is calculated by combining three component scores: 

engagement, transaction, and node. 
 

The stake score, SA, for an account A is the percentage of currency it holds relative to the 
total currency held by all high value accounts. This percentage is not less than the percentage 
of currency held by the account in relation to all currency in circulation. Let BArepresent the 
amount of currency owned by account A. The wagering score for account A is calculated for 
each eligible account as follows: 

 
The transaction score, TA, for an account A is the percentage of transaction fees it has paid 

relative to all fees paid by high-value accounts within a time period P. Let FeesPaid A be the 
amount of fees paid by A in time period P . The transaction score for account A is calculated 
for each eligible account as follows: 
 

39 This measure is strongly correlated with engagement when all accounts are actively running nodes. Its intent is to 

differentiate accounts running nodes from idle accounts. 
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The node score, NA, for an account A is the percentage of times it has been specified as a 

beneficiary relative to the total number of high-value account beneficiaries within a time 
period P . Let BeneficiaryCount A be the number of times A has been specified as a 
beneficiary in time period P . The node score for account A is calculated for each eligible 
account as follows: 

  
 
 

Together, transaction and node scores are called activity scores because they are both 
dynamic and derived from an account's activity rather than its participation. The transaction 
score is weighted at 80% and the node score at 20%. Additionally, the combined score is 
scaled relative to an account balance, so there is a moderating effect of activity on importance 
as engagement increases.40. This allows smaller active accounts to get a big boost relative to 
larger active accounts. This partially redistributes the importance of rich accounts towards 
poorer accounts and somewhat counteracts the rich getting richer phenomenon inherent in 
PoS. The prominence of the activity relative to participation can be set using 
network:importanceActivityPercentage. When this value is zero, Bitxor it behaves like a pure 

PoS blockchain. Setting this too high could weaken blockchain security by reducing the cost 
for an attacker to gain majority importance and execute a 51% attack. 

 

As a performance optimization, activity information is only collected for accounts that 
are high value at the time of the most recent importance calculation. Between important 
recalculations, the new data is stored in a working cube. On each importance 
recalculation, existing cubes are moved, the working cube is finalized, and a new 
working cube is created. Each bucket influences at most five important recalculations. 
As a result, the activity information expires quickly. 
 

The network:totalChainImportance setting specifies the total importance that is 

distributed across all accounts in a network. Since, the punctual importance of the account 
 

40The activity score is rescaled after buffering to contribute the desired network:importance-
ActivityPercentage to the importance calculation.  
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Figure 29: Activity Cubes 
 
 

A, MEA′, can be calculated as follows: 

  
 

The final importance score, IA for account A, is calculated as the minimum of I′A in the current 
and previous importance calculations. This serves as a precaution against a stake crushing 
attack and a general incentive to minimize unnecessary movement of stakes. There is no 
scaling, so the AI sum for all high value accounts can be less than the network:  
totalChainImportance. 
 

14.2 sibyl attack 

 

Sybil's attack42 in a peer-to-peer network it occurs when an attacker creates multiple identities 

to gain disproportionately large influence over the network or some other advantage. In Bitxor, 

an attacker might attempt such an attack to increase prominence. Each component of the 

importance score must be robust against these types of attacks. 
 

As described in14.1:Weighting algorithm, an account's activity score is reduced relative to 

its balance. Consequently, dividing the balance of one account among several accounts 
 

41There is additional edge case handling that is not reflected in the equation for how zero component scores are handled. If the 
transaction or node score is zero, the other will be scaled up and serve as the fully weighted activity score. If both are zero, the 
bet score will be extended and used exclusively. 
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will reduce the applied average damping factor. Assuming a constant level of activity is 
maintained before and after the redistribution, the cumulative importance will be greater after 
the split.43. This effect is by design and encourages virtuous behavior because the prominence 
drive is only realized if the activity is sustained. Preservation of transaction score encourages 
transaction and payment of fees from multiple accounts. The preservation of the node score 
encourages the execution of additional nodes and their connection to the network. 
 

Suppose µ := minHarvesterBalance and an attacker who owns N · µ total currency.  
Consider two extremes: 

 
1. The attacker has a single account with N · µ currency. 

 
2. The attacker has N accounts with µ currency. 

 
 

Bet Score Increase 

 
At both ends, the total currency held by the attacker is the same. Consequently, the bet score 
is the same and no profit is made by splitting the accounts. For emphasis: 

 

 (16)
   

   

 
 
Boost node score 

 

Bitxor allows the owner of a node to specify a beneficiary for each block harvested on their 

node. Every time an account is specified as a beneficiary, assuming it's already a high value 
account, you'll get a slight increase in your node score. 
 

At both ends, the total payee count for the attacker is the same. Consequently, the node's 
score is the same and there is no unearned benefit from splitting the accounts. For emphasis: 

 
  (17)

   
 
 
   

   

 
The attacker could get a higher node score if running more nodes allows the attacker's nodes 

to host more proxy collectors. This is not a bad result and by design. It's 
 

43 This assumes that only one account is split. The effect is reduced when multiple accounts are split because activity scores 

are relative. 
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it encourages more nodes in the network, which is a good thing that makes the network 
stronger. 
 

The attacker could try to cheat by setting up N virtual nodes pointing to a single physical 
machine. Each of these virtual nodes would be treated by the rest of the network as a normal 
node, and the underlying physical node would interact with it N times more often than a normal 
node in the network. This implies that the virtual nodes are running on a strong physical server, 
which is still beneficial to the network relative to a weaker physical server. 
 
 
Increased transaction score 

 
The transaction score is based on fees only. There is no difference between a large account 
spending X on fees and N smaller accounts each spending X on fees. For emphasis: 

 
  (18)

   

  

 
 
 
 

 
The only chance to increase the transaction score is a fee attack, which is discussed in detail 

in14.4:Tariff attack. 

 

14.3 Nothing at stake attack 

 

A general criticism of the PoS consensus is the nothing at stake attack44. This attack 
theoretically exists when the opportunity cost of creating a block is negligible. There are two 
variations of this attack. 
 

In the first variation, all harvesters except the attacker harvest on all forks. Simplifying the 
description to assume a binary fork, the attacker would send a payment to one branch and 
immediately begin harvesting at the other branch. Assuming the attacker is important enough 
to collect blocks, eventually the branch without the attacker's payment will become the referral 
chain because it will have a higher score.Four. Five. The attacker's payment is not included in 
this branch, so the attacker's funds are effectively returned. 
 

There are three main defenses against this attack. First, the attacker has a limited amount 

of time to produce a better chain because, at most, network:maxRollbackBlocks 
 

44 This assumes there is only one attacker or all attackers collude to withhold the reward from the same branch.  
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blocks can be reversed. If the merchant waits to provide services until at least this number of 
blocks is confirmed, the attack is impossible. Second, to execute a successful nothing-in-play 
attack, the attacker must possess significant importance in the network.46. Third, the 
successful execution of this attack against the network will likely have a negative influence on 
the value of the coin. Since other harvesters, by harvesting on all forks, allow this attack, profit-
maximizing harvesters should only harvest on a single chain to avoid it. 
 

In the second variation, a single attacker collects on all forks and attempts to capture all 
fees, regardless of which chain becomes the referring chain. An attacker could collect on all 
forks starting from the second block looking for the chain where the attacker collected the most 
fees. Since block acceptance is probabilistic, in theory an attacker could spend infinite time 
building the perfect chain where the attacker has harvested all the blocks. 
 

Most theoretical nothing-stakes attacks envision an idealized blockchain and ignore the 
protocol-level safeguards that protect against such attacks. In practice, this type of attack is 
not practical if the attacker has a minority of currencies. The two aforementioned defenses are 
also applicable here. In addition, changes in the difficulty of the blocks (see8.1:block difficulty) 
are capped at 5%. It will take some time for the attacker chain difficulty to adjust downwards, 
which will make lock times at the start of the secret chain significantly slower than the main 
chain. These large time differences will make it unlikely that the attacker will produce a chain 
with a better score (see8.2:Block Score). 
 

A small amount of betting age also decreases the probability of this second variation. 
Requiring accounts to have non-zero importance for two consecutive importance recalculations 
as a precondition for harvesting makes hash generation annoying47 non-viable attacks. To 
exploit this, the attacker would need to move all the currency to a specific account plus 
network:importanceGrouping blocks before the attack could be carried out. Since the attacker 
cannot know all the locks that will be confirmed in the interim period, such a move cannot result 
in any benefit. 
 
 
14.4 Tariff attack 

 
A fee attack is an attempt by an attacker to exploit the transaction score by paying high fees  

to increase their own importance. The attack is considered effective if it produces a 

 
 

46 Theoretically, an attacker would need only network:minHarvesterBalance to execute this attack. In practice, to guarantee a 

successful execution, the attacker would need a importance large enough to always harvest a block within the rollback interval.   
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positive expected value. 
 

The analysis in this section will be performed using the recommended public network  
settings. These include network:totalChainImportance equal to 9 billion, 
network:importanceGrouping equal to 359 blocks, and minHarvesterBalance:equal to 10000 
coins. Also, network:importanceActivityPercentage is 5, so the cumulative transaction score 
(seeEquation 14.1:Weighting algorithm) represents 4% of importance. 

 

big account 

 
Consider an account that is large enough to collect one block per importance recalculation 

interval without any activity pulse. Assuming only 2 of 9 billion currency is being actively 

collected, the account will need at least 5.57 million currency to collect this frequently. 
 

The account could try to make a profit by adding a transaction with a high fee to one of its 
own collected blocks at each recalculation interval. This would increase the importance of the 
account and allow you to collect more blocks in the future and consequently charge more fees. 
However, this activity is not without risk. The account is at risk of paying the high fee if a better 
block replaces its block. When the original block is undone, the high-fee transaction will enter 
the cache of unconfirmed transactions and will be eligible for inclusion in a new block created 
by a different collector. This scenario is a net loss because the account will have to pay the 
high fee.  

  
 

The expected value is positive for small values of P . As P or F increases, it quickly becomes 

negative. With the recommended public network configuration, P must be less than 0.0001 for 

the expected value to be positive. This implies that a fork resulting in a loss occurs less than 

once every 10,000 blocks. Given the distributed consensus mechanism, this is almost 

impossible. Small forks of one or two blocks occur quite often. 
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Figure 30: Fee Attack Large Account Analysis (F = 100) 

 
small account 

 
Consider an account that has a balance equal to network:minHarvesterBalance. Suppose the 
account makes a transaction with high fees in two consecutive recalculation intervals. These 
fees are lost to other collectors because the probability of the account collecting a block is quite 
small. The high fees paid increase the importance of the account enough that you can collect 
at least one block per importance recalculation interval. From this point on, the account behaves 
like the large account from the previous section. It will also add a transaction with a high fee to 
one of its own collected blocks at each recalculation interval. The account owner expects that, 
due to the increased probability of collecting a block, the additional fees charged will exceed 
their costs. 
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Figure 31: Fee Attack Balance Sensitivity (F = 100, 

¯
= 1) 

 

 F 
  

 

Let P be the probability of a fork resulting in a loss, F be the high fee in a block, and F¯ be the average fee in a 

block. The expected value, EV , excluding the initial transaction fees, can be approximated as follows:  
 

 

 

 

 

 

 

 

  
48The difference from the large account example is that the damping factor is completely removed.either
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The expected value is positive for larger values of P than in the large accounts scenario. A 

fee attack confers an outsized benefit to a small account relative to a large account because 
the latter's activity scores are lowered more aggressively than the former's. Specifically, a 
damping factor of 5571 is applied to the large account activity score, but no damping factor is 
applied to the small account activity score. 

 
The expected value increases as F¯ increases. As P or F increases, it quickly becomes 

negative. Using the recommended public network settings, P needs to be less than 0.05 for the 
expected value to be positive. This implies a fork resulting in a loss occurs less than once every 
20 blocks. Given the mechanism of distributed consensus, this is possible. 
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Figure 32: Fee Attack Small Account Analysis (F = 100) 

 

more discussion 

 
Although a single small account can gain a positive expected value from executing this attack, 
the reward decreases as multiple accounts attempt it simultaneously. Since there is a positive 
expected value, all profit-maximizing actors should attempt this attack. As more accounts try, 
the boost in importance earned by each individual account decreases rapidly, and 
consequently the expected value decreases as well.49. 
 

Also, there is an upper limit on the number of small accounts that can run this attack 
simultaneously. For this attack to be successful, an account must be able to collect at least 
one block per importance recalculation interval. This assumes that the small account can 
increase its importance score by exploiting the transaction score component. There is a 
theoretical limit to the number of accounts that can achieve a significant enough boost because 
both the importance assigned to the transaction score and the recalculation interval are finite. 
Considering the recommended public network configuration, this limit is approximately 0.04 
÷3591≈ 14.36 accounts.  

49 ¯ 
 As more accounts produce high-fee transactions to attempt this attack, F increases. for big numbers 

For attackers, if F does not increase proportionally, the expected value of the attack may increase even 
though the importance boost per account decreases. This is an expected result as the value of the 
blocks also increases significantly. 
 
 

Page 88 of 115 



 
 
 
Let N be the number of small accounts attempting the attack, P be the probability of a fork 
resulting in a loss, F be the high fee in a block, and F¯ be the average fee in a block. The 
expected value, EV , can be approximated as follows:  
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Figure 33: Fee attack declining with more attackers (F = 100, F¯ = 1) 
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15 Ending 
 
 

The CAP theorem posits that, in the presence of a network failure or partition, a distributed 

system must choose between consistency or availability. 
 

In a consistent system, requests sent to two nodes will always return the same value. If the 
value is not globally agreed upon, the request will fail. This ensures that all clients have a 
uniform view of the system. BFT systems typically choose consistency and risk network 
positions. A naive consistent system might require all interested parties to vote on each block 
and only allow the next block when 2 of the interested parties approve. If stakeholders do not 
vote promptly, there could be a delay in block production. 
 

In an available system, requests sent to two nodes will always return a value immediately. 
The values returned may be different, so different clients may have different views of the 
system. PoW and NXT style PoS systems generally choose availability and eventual 
consensus. They run the risk of propagating different (potentially unsolvable) views of the 
system. The PoW-like systems available, like Bitcoin, have a simple forking rule that picks the 
chain with the most work. If the network is divided into partitions with the same hashing power, 
all partitions will proceed independently without knowing that they are partitioned. When they 
do eventually reconnect, there will be an expensive (and potentially deep) fork resolution. 
 

Bitxor always prefers availability to consistency, but optionally supports use of a purpose 
device in addition to its native consensus (see14:Consensus). This device features a BFT-
inspired voting system that is orthogonal to block production and block consensus. As a result 
of its optionality, Bitxor supports networks that use deterministic termination (when the 
device is enabled) or probabilistic termination (when the device is disabled). The gadget is 
automatically enabled when node:maxRollbackBlocks is zero50.  

The gadget approach follows the model of GRANDPA [SK20] used by Polkadot. GRANDPA, 
in turn, is influenced by CASPER [BG17], which in turn is influenced by PBFT [LC99]. 
Traditionally, PBFT uses three types of messages: prep, setup, and commit. Prep messages, 
which are used to start rounds, are not used in Bitxor. Instead, the elapsed network time 

(seesixteen:time synchronization) is used to start rounds. The preparation and confirmation 
messages in PBFT roughly correspond to the pre-voting and pre-confirmation messages in  
Bitxor. 
 

fiftyThe completion extension must also be enabled.  
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15.1 High level overview 

 
Block completion is a complicated process that involves two types of messages: pre-votes and 
pre-commits. At the beginning of a round, each voter only knows the blocks stored on the chain 
local to her. No voter knows the blocks stored on the chains of any other voter. Consequently, 
it is impossible for a voter to know which block of it will receive a supermajority vote and will be 
finalized ahead of time. 
 

To illustrate the general termination procedure, consider a network made up of three voters 
with the same weight. A qualified majority requires that at least two of the three voters vote for 
the same hash. F refers to the last completed block.  
 

D 1
3 

F3 A3 C1
3 3 3

  B.2 
  3 
  E1

  3

 

Subsequently, voters will be referenced by their colors in the red, green and blue figure. 
 

Completion is greedy and tries to finish as many blocks as possible each round. In the first 
stage of prevoting, each voter builds and publishes a hash chain that represents their local 
chain starting with the hash of the last finished block (F). In this example, the pre-vote strings 
will be: 

 
1. red: H(F), H(A), H(D) 

 
2. green: H(F), H(A), H(B), H(C) 

 
3. blue: H(F), H(A), H(B), H(E) 

 
 

Suppose that red, due to bad network connections, only receives the previous vote from 
green but not from blue. Assume that green and blue receive early votes from all voters. At this 
point, each voter has the following pre-vote strings: 

 
1. red: 

 
(a) H(F), H(A), H(D) 

 
(b) H(F), H(A), H(B), H(C) 
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2. green: 

 
(a) H(F), H(A), H(D)  
(b) H(F), H(A), H(B), H(C)  
(c) H(F), H(A), H(B), H(E) 

 
3. blue: 

 
(a) H(F), H(A), H(D)  
(b) H(F), H(A), H(B), H(C)  
(c) H(F), H(A), H(B), H(E) 

 
Each voter inspects all pre-vote hash chains to calculate the best block that could end up in 

this round. red only sees a large majority for A, but green and blue see a large majority for B. 
In the next pre-commit stage, each voter posts the hash of their best computed block: 
 

1. red: H(A) 
 

2. green: H(B) 
 

3. blue: H(B) 
 

Suppose that green, due to bad network connections, only receives the prior 
acknowledgment from red but not from blue. Assume that red and blue receive prior 
commitments from all voters. At this point, each voter has the following prior commitments: 
 

1. red: H(A), H(B), H(B) 
 

2. green: H(A), H(B) 
 

3. blue: H(A), H(B), H(B) 
 

Each voter inspects all precommit hashes to calculate the best block that can be finalized. It 
is important to note that a precommit for one block is also a precommit for all ancestors of the 
block. green only sees a large majority for A, but red and blue see a large majority for B. In the 
final commit stage, each voter finalizes the following blocks: 
 

1. red: H(A), H(B) 
 

2. green: H(A) 
 

3. blue: H(A), H(B) 
 

The following sections discuss the completion algorithm in more detail. 
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15.2 rounds 

 
An end round represents a step in the end process and is made up of an end epoch and an 

end point. 
 

An epoch is a group of blocks. All blocks within an epoch are terminated with a single voting 
set, which is recomputed every network:votingSetGrouping block. The first epoch is defined as 
containing exclusively the genesis block and is considered intrinsically finished. Subsequent 
epochs must end in a block with a height that is a multiple of network:votingSetGrouping. An 
epoch is considered finished when all the blocks within it are finished. There will always be a 
completion test available for the last block within an epoch. 
 

A point is a fine-grained step within an epoch that represents progress toward the completion 
of that epoch. Each point can end zero or more blocks. A point can only end blocks within its 
parent epoch. This prevents any block from potentially being finalized by multiple voting sets, 
which could lead to a security breach. There is no limit to the number of points associated with 
an epoch. There will be as many points as it takes to finish all the blocks within an epoch. The 
last point within an epoch will always end the last block of that epoch. A block is considered 
finished when a point ends that block or any of its descendants. 
 

When a network is partitioned, it is possible for a point to end up with zero additional blocks. 
This happens when only the last completed block receives a qualified majority of votes. This is 
not a fatal error and can occur naturally in the presence of network partitions. Afterwards, the 
termination procedure will continue and advance to the next point based on the conditions 
described in15.5:Algorithm. 
 

The important difference between an epoch and a point is their relationship to the voting sets. 
Different epochs may have different voting sets. All different points within the same epoch must 
use the same voting set associated with the epoch. 
 

 P1 P2 P3 . . . PJ P1 . . . PK P1 . . . PL  
 

. . . 
           

. . .
 

 Epoch X Epoch X + 1  Epoch X + 2 
 

             
 

 
 

Figure 34: Relationship of epoch and (P)point 
 

 

15.3 Voters 

 
An account is eligible to vote at one time if all of the following are true: 
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1. The harvest balance in the last completed block of the previous epoch is not less than 

the network-defined network:minVoterBalance. 
 

2. The voting key is recorded such that Start Epoch ≤ epoch ≤ End Epoch. 

 
A set of votes for an epoch is the set of all accounts that meet the above conditions. It is 

important to note that only balance, not importance, is used when weighting votes. This 
prevents a security breach that could occur when using important51. 
 

All accounts eligible to vote are expected to vote. A well-behaved voter is expected to vote 
in all rounds for which they are eligible and not submit multiple votes per round. It is implicitly 
assumed that all voters will be running HA nodes and trigger completion: Enable Voting . Voters 
who violate these expectations are considered Byzantines and could be punished in the future. 
Votes are weighted proportionally to balance, so votes from voters with higher balances have 
more impact. 
 
 

15.4 Messages 

 
The pre-voting and pre-confirmation messages share a common design. 
 

51When there are multiple network partitions, each partition would independently recalculate 
importances with potentially different activity scores. Since importances are scaled and not absolute, it 
is theoretically possible for multiple partitions to have supermajorities of importance and end up in 
conflicting blocks.  
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Figure 35: Message layout 
 
 

Signature is the signature of the BM tree (see3.4:Voting Key List) of the message. The root 
public key must match the voting key on record for the epoch of the message. The lower public 
key must match the public key in the tree corresponding to the epoch. 
 

The version is the version of the message. 
 

Hashes contains hashes Hashes Count. A pre-vote message will contain at least one hash 
and until completion: max Hashes Per Point. A precommit message will always contain exactly 
one hash. 
 

Step Identifier indicates the completion round of the message. The high bit of the dot is 
reserved to indicate the type of message where 0 indicates pre-vote and 1 indicates pre-
commit. 
 

Height is the block height of the first hash contained in Hashes. 
 

 

15.5 Algorithm 

Define function g(. . .) to select the last block that has cumulative weighted votes of at least a 

supermajority of available voting weight. Define Vr,v as a prevote at round r by voter v. Define Cr,v as 

a precommit at round r by voter v. Define Er,v as the estimate by voter v of what might have been 

finalized in the round r. Notice that this is only an 
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estimate and a greedy one at that. Er,v must be the latest block on the chain containing 
g(Vr,v) that can receive a supermajority of Cr,v. A round is completable when either: 
 

 Er,v < g(Vr,v)  
 It is impossible for any child of g(Vr,v) to have a supermajority of Cr,v 

 
A voter v can start a round r when the previous round is compable and he has cast votes 

in all previous rounds in which he was eligible. 

 

15.5.1 Prevote 

 

when 1∗step Duration has elapsed or is completionable, v submits a previous vote. 
 

A voter determines the best block that can potentially be finalized. Creates a pre-vote 
message composed of all hashes starting with the hash of the last completed (local) block. The 
hash string of the pre-vote message will contain at most the completion: hashes max Hashes 
Per Point. The last hash of the chain will correspond to a block with a height multiple of 
completion: prevoteBlocksMultiple52. This increases the probability that nodes will send pre-
vote messages with identical strings that can be aggregated more aggressively. 
 

Hashes for unfinished blocks are prohibited from spanning epochs. This ensures that there 
is exactly one voting set that can end a block at any height. This property enables dynamic 
voting sets. 
 

The pre-vote messages include hash strings, rather than individual hashes, because each 
Bitxor node stores a single chain of blocks instead of a tree of blocks. Hash string aggregation 
allows Bitxor to rebuild a virtual block tree and apply votes to visible and non-visible 
branches. 
 

Conceptually, a voter has one vote per height. Effectively, he votes with his weight on each 

hash in the pre-vote hash chain. 

 

15.5.2 Pre-committed 

 

Next, a voter waits until g(Vrv) ≥ mir−1,v. when 2∗step Duration (relative to the start of the 

round) has elapsed or is completionable, v sends a prior confirmation. 
 
 

52 In practice, finalization:maxHashesPerPoint is expected to be much larger than finalization:prevoteBlocksMultiple. Also, 

network:votingSetGrouping  must be a multiple of finalization:prevoteBlocksMultiple. 
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A voter determines the best block that can potentially be finalized. Creates a precommit 
message with a single hash corresponding to g(Vrv).  

Conceptually, a voter has one vote per height. Effectively, it votes its weight on each hash 

between the last completed block and the previous commit hash. 

 

15.5.3 Engage 

 
Asynchronously, a voter collects pre-vote and pre-commit messages for round r. In practice, 
these messages will be associated with the current round or the previous round. When g(Crv) 
changes, that block is terminated, as well as all blocks between that block and the local 
terminated block. 
 

Given a completion round with epoch e and point p, in most cases the next round will be (e, 
p + 1). The only exception to this is when the last block of epoch e is finished. In that case, the 
next round is (e + 1, 0). Note that it is possible to initialize both (e, p + 1) and (e + 1, 0). In that 
scenario, (e + 1, 0) will eventually dominate and (e, p + 1) will not complete. 
 
 

15.6 Proofs 

 
To minimize network traffic, nonvoters do not send or receive individual prevoting or 
precommitting messages. Instead, these nodes individually pull and verify completion tests 
from the network periodically based on finalization:unfinalizedBlocksDuration. When this 
setting is zero, tests are only extracted at the end of each epoch. When this setting is nonzero, 
tests are optimistically fetched as long as the last completed block is at least 
inalization:unfinalizedBlocksDuration after the last unfinished block. Upon verification, these 
non-voting nodes end all epochs up to and including the test epoch. 
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A completion test is made up of a header and a collection of message groups. The header 
indicates the last block completed by the test.53. This block is uniquely identified by its height 
and hash. The header also indicates the completion round in which the block was completed. 
 

A message group is an aggregation of completion messages that cryptographically verify 
the proof. All completion messages that differ only in signature are grouped into a single 
message group with all signatures attached. There will always be at least two groups of 
messages in a test, one for pre-voting and one for pre-confirmation, but there may be more 
due to the way votes are counted. 
 

Verification of a finalization proof requires knowledge of the voting set associated with its 
epoch. Importantly, the eligible voters and their weights need to be known. In order to be 
verified, a proof must only contain valid supporting messages from eligible voters. Additionally, 
the messages must indicate that the block specified in the proof header is g(Cr,v) and g(Vr,v) 
≥ g(Cr,v)  

53 Technically, a test terminates the last block and all its ancestors, which are guaranteed to form a single chain. 
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15.7 Sybil Attack  
 
When deterministic completion is enabled, a Sybil attack among voters is prevented by 
weighting all votes by account balance. The only way for an attacker to get more voting power 
is to get more share. Splitting an account balance across multiple accounts will not change the 
overall voting power. 
 
 

15.8 Nothing at stake attack 

 
When deterministic completion is enabled, the nothing at stake attack can be avoided if a 
merchant waits to serve until a block completes. If a merchant does not wait, there are 
additional defenses against this attack. 
 

Most significantly, the attacker has a limited amount of time to produce a better chain. The 
attacker must generate a better chain before the network finalizes the block the attacker wants 
to undo. Also, the time required for a significant drop in difficulty is probably longer than the 
time it takes to finish a given part of the chain. 

 

15.9 Examples 

 
In all examples, consider a network with four voters of equal weight. A qualified majority 
requires that at least three of the four voters vote for the same hash. F always refers to the last 
completed block. A pre-vote message issued for a block B implies a pre-vote hash chain 
composed of hashes from F to B, inclusive. 

 

Example 1 

 
Pre-vote messages are issued for A, C, D, E. Since C is on the branch of D and E, he has a 

supermajority vote even though only one voter explicitly voted for him 

.  
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Example 2 

 
Consider a network divided into two partitions of equal size. Pre-vote messages are issued for 
A, A, B, B. Since F is on the branch of A and B , it has a large majority of votes even though 
no voter explicitly voted for it. It is important to note that no new blocks are finished because F 
is already finished. 

 

 

Example 3a 

 
Pre-vote messages are issued for A, B, C, D so that B has a large majority of pre-votes. 
Suppose two voters see previous votes A, B, C and send pre-commitments for A. Suppose one 
voter sees previous votes B, C, D and send a previous commitment for B. A voter can determine 
that the weight of the unknown previous commits (25%) cannot cause a super majority of 
previous commits for B, which only has 25% previous commits. This satisfies condition 1 
on15.5:Algorithm. 

  
 

Example 3b 

 
Consider a slight modification of the previous example where the previous votes are received 
in a different order. As stated above, pre-vote messages are issued to A, B, C, D so that B has 
a large majority of previous votes. Suppose two voters see previous votes B, C, D and send 
pre-commitments for B. Suppose one voter sees previous votes A, B, C and send a previous 
commitment for A. A voter can determine that the weight of the unknown precommits (25%) 
cannot cause a supermajority of precommits for C, which only has 0% precommits. This 
satisfies condition 2 in15.5: Algorithm. 
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Example 4 

 
Consider an extension of the previous example where A is committed at point r − 1 but B is 
not. Now, the voters have moved on to the next point r. Four pre-vote messages and four pre-
confirmation messages are issued for F . Blocks B, C, D have been removed from the main 
chain, although previous commits for B were used to confirm A at r−1. To check the proof on r 
− 1, there needs to be a record that B is a descendant of A. This information is stored in the 
hash strings of the pre-vote message, but not in the pre-commit messages. This is why the 
verification of the completion tests requires previous votes.  
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16 time synchronization 
 

Like most other blockchains, Bitxor is based on timestamps 

for the order of transactions and blocks. Ideally, all nodes on the network should 
be synchronized with respect to time. Although most operating systems 
modern have time  
Integrated synchronization, nodes can still have local clocks that deviate from real time by 
more than a minute. This causes those nodes to reject valid transactions or blocks, making it 
impossible to sync with the network. 
 

Therefore, it is necessary to have a synchronization mechanism to ensure that all nodes 

agree on time. There are basically two ways to do this: 
 

1. Use an existing protocol, such as Network Time Protocol (NTP)54. 
 

2. Use a custom protocol. 
 

The advantage of using an existing protocol like NTP is that it is easy to implement and the 
network time will always be close to real. This has the disadvantage that the network depends 
on servers outside the network. 
 

Using a custom protocol that only relies on the P2P network solves this problem, but there 
is a tradeoff. It is impossible to guarantee that the network time is always near real time. For 
an overview of the different custom protocols, Bitxor uses a custom protocol based on 
Chapter 3 of this thesis to be completely independent of any external entity. The protocol is 
implemented in the timesync extension. 

 

16.1 Sample Collection 

 
Each node on the network manages an integer offset that is set to 0 at startup. The local 
system time in milliseconds adjusted by the offset (which can be negative) is the network time 
(again in milliseconds) of the node. 
 

After the start-up of a node is completed, the node (hereinafter referred to as the local node) 

selects partner nodes to perform a time synchronization round. 
 

For each selected partner, the local node sends a request asking the partner for its current  

network time. The local node remembers network timestamps when each 
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t2 t3 
associated node network time  

 
 

request response 
 
 
 

local node network time 

t1 t4 
 

Figure 37: Communication between local and associated node. 
 
 
the request was sent and when each response was received. Each partner node responds with 
a token containing the timestamp of the arrival of the request and the timestamp of the 
response. The partner node uses its own network time to create the timestamps.Figure 
37illustrates communication between nodes. 
 

Using the timestamps, the local node can calculate the round trip time 
 

rtt= (t4 - t1) - (t3 - t2) 
 

and then estimate the offset o between the network time used by the two nodes as 

  
This is repeated for each time synchronization partner until the local node has a list of 

compensation estimates. 

 

16.2 Apply filters to remove bad data 

 
There may be bad samples due to various reasons: 
 

• A malicious node provides incorrect timestamps. 
 

• An honest node has a clock far from real time without knowing it and without having 

synchronized yet. 
 

• The round trip time is very skewed due to Internet problems or one of the nodes being 

very busy. This is known as channel asymmetry and cannot be avoided. 
 

Filters are applied that attempt to remove bad samples. Filtering is done in three steps: 
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1. If a response from a partner is not received within the expected time (ie if t4 - 

t1>1000ms) the sample is discarded.  
2. If the calculated compensation is not within certain limits, the sample is discarded. The 

allowed limits decrease as a node's uptime increases. When a node first joins the 
network, it tolerates a high offset to match the existing consensus of network time within 
the network. As time passes, the node becomes less tolerant of reported tradeoffs. This 
ensures that malicious nodes reporting large offsets are ignored after some time. 

 
3. The remaining samples are sorted by their offset and then alpha clipped at both ends. 

In other words, on both sides a certain portion of the samples is discarded. 

 

16.3 Calculation of the Effective Compensation 

 
The reported offset is weighted with the importance of the node reporting the offset. Only nodes 

that expose a minimum importance are considered as partners in order to avoid solely picking 

nodes with nearly zero importance. This is done to prevent Sybil attacks. 

 

An attacker that tries to influence the calculated offset by running many nodes with low 

importances reporting offsets close to the tolerated bound will therefore not have a bigger 

influence than a single node having the same cumulative importance reporting the same offset. 

The influence of the attacker will be equal to the influence of the single node on a macro level. 

 

Also, the numbers of samples that are available and the cumulative importance of all partner 

nodes should be incorporated. Each offset is therefore multiplied with a scaling factor.  

 

Let Ij be the importance of the node reporting the j-th offset oj , n be the number of nodes that 

were eligible for the last importance calculation and s be the number of samples. Then the 

scaling factor used is  

 

 
 

This gives the formula for the effective compensation o  
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Figure 38: Coupling factor 

 
Note that the influence of an account with great importance is artificially limited because the 

north term caps the scale. Such an account can increase your influence on a macro level by 
dividing your balance into accounts that do not have a cap. However, doing so will likely 
decrease your influence on individual partners because the probability of all your split accounts 
being chosen as time synchronization partners for a single node is low. 
 

16.4 Coupling and Threshold 

 
New nodes that have just joined the network need to quickly adjust their offset to the already 
established network time. On the contrary, old nodes should behave much more rigid so as 
not to be too influenced by malicious nodes or newcomers. 
 

To enable this, nodes only adjust a portion of the reported effective compensation.  
The nodes multiply the effective displacement with a coupling factor to generate the final 
displacement. 
 

Each node keeps track of the number of time synchronization rounds it has performed.  
This is called the age of the node. 
 

The formula for this coupling factor c is: 

  
This ensures that the coupling factor will be 1 for 5 rounds and then decay exponentially to 

0.1. 
 

Finally, a node only adds any final computed offset to its internal offset if the absolute 

value is above a certain threshold (currently set to 75ms). This is effective in preventing 
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Slow network time drifts due to communication between nodes that have channel 

asymmetry. 
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17 Messenger service 
 

blockchain client applications retrieve data from 

blockchain and present them to their users To make these clients more useful, always 
they must present the most up-to-date blockchain data and update their communication 

interfaces. 
user when needed the displayed data changes. A naive customer might 
periodically poll a REST server or local database for data from 
blockchain. This is inefficient because it requires using more network bandwidth and other 
resources than necessary. Instead, Bitxor allows customers to subscribe to 
data changes through a single message queue. 
 
 

17.1 Message channels and topics 

 
The message queue of Bitxor exposed to customers supports multiple channels. Each 
channel has a unique theme. A topic always begins with a topic marker indicating the type of 
messages to be received. In some cases, the marker is followed by an unresolved address 
that is used for additional filtering. Since a client is generally not interested in all types of 
blockchain state changes, they can subscribe to a subset of available topics.Figure 39 lists all 
supported theme markers. 
 

Subject marker name subject marker 
  

Block 0x9FF2D8E480CA6A49 

drop blocks 0x5C20D68AEE25B0B0 

completed block 0x4D4832A031CE7954 

Transaction 0x61 

Add unconfirmed transaction 0x75 

Delete unconfirmed transaction 0x72 

Add partial transaction 0x70 

Delete partial transaction 0x71 

transaction status 0x73 

joint signature 0x63 
 

Figure 39: Topic Markers 
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17.2 Connection and Subscriptions 

 
The zeromq extension adds support for messaging. If a node wants to support messaging, this 
extension must be enabled in the broker process. The extension registers subscribers for 
events related to blocks and transactions (see2.2:Bitxor Extensions) and maps those events 
to messages in the message queue. When enabled, the agent listens on port messaging: 
subscriber port for new subscribers. Clients can connect to and subscribe to the message 
queue for one or more topics. 
 
 

17.3 block messages 

 
Topics for locked messages only consist of a topic marker. Layouts for all blocking messages 

are shown inFigure 40. The following block messages are supported: 

 
• Block: A new block has been added to the chain. 

 
• Drop Blocks: Blocks were dropped after a certain height. 

 
• Block completed: The block has been completed. Posted only when deterministic 

completion is enabled. 
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(c) Finalized block message layout 
 

Figure 40: Block-related messages 
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17.4 transaction messages 

 
Transaction message topics consist of a topic marker and an optional unresolved address filter. 
When an unresolved address filter is provided, only messages involving the specified 
unresolved address will be generated. For example, a message will be generated for a transfer 
transaction only if the specified unresolved address is the sender or recipient of the transfer. 
When no unresolved address filter is provided, messages will be generated for all transactions. 
Layouts for all transaction messages are shown inFigure 41, Figure 42Y Figure 43. The 
following transaction messages are supported: 

 
• Transaction: A transaction was confirmed, that is, it is part of a block. 

 
• Add uncommitted transaction – An uncommitted transaction has been added to the 

uncommitted transaction cache. 
 

• Uncommitted Transaction Delete – An uncommitted transaction was deleted from the 

uncommitted transaction cache. 
 

• Add Partial Transaction – A partial transaction has been added to the partial 

transaction cache. 
 

• Delete Partial Transactions: A partial transaction was deleted from the partial 

transaction cache. 
 

• Transaction Status: The status of a transaction has changed. 
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(b) Remove message 

 

(a) Add message 
 

Figure 41: Unconfirmed transactions related messages 
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(b) Remove message 
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Figure 42: Partial transactions related messages 
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Figure 43: Transaction status message 

 

 

17.4.1 Joint signature message 

 
The subject of a co-signed message consists of a subject marker and an optional unresolved 
address filter. The message is issued to subscribed clients when a new co-signature is added 
for a transaction added to the partial transaction cache. When an unresolved address filter is 
provided, messages will only be generated for aggregated transactions involving the specified 
address. Otherwise, messages will be generated for all changes. The joint signature message 
design is shown inFigure 44. 
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Figure 44: Cosignature message 
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18 Control-Stake 
 

Decentralized Control 
mechanism whose objective is to protect the Bitxor Community from attack and 
manipulation by large financial groups. 

 
Process that is carried out through a control committee established by the Super Voting Nodes 
 
 

17.1 Technical Information 

 
The Control-Stake is configured in the configuration of the core of Bitxor, this must set a 

percentage in network::harvestControlStakePercentage, this is dedicated for Control-Stake 
link to reward harvest system. 
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